Ultra-high-molecular-weight-polyethylene (UHMWPE) has the greatest impact strength of any thermoplastic and has a variety of both industrial and biomedical applications. Equal channel angular processing (ECAP) is a fabrication method for UHMWPE that introduces shear into the polymer matrix by deforming the polymer through an angular channel, with the goal of enhancing mechanical properties. Both nanographite (NG) and carbon black (CB) attract interest as potential carbon additives for use in creating UHMWPE conductive polymer composites (CPC), but they have not yet been extensively tested in conjunction with ECAP. This study presents a systematic evaluation of the mechanical and electrical properties of 1.0 wt % CB/UHMWPE and NG/UHMWPE composites created using ECAP. These samples are compared against pure UHMWPE ECAP controls as well as compression molded (CM) composite samples. Results indicate that both NG and CB carbon additives successfully create CPCs with a corresponding decrease in mechanical properties. ECAP results in comparatively high mechanical and conductive properties when compared with compression molding. Electrical conductivity is shown to be inversely correlated with tensile strain in a repeatable manner, and microstructural theory is discussed. This work suggests a method to produce flexible, conductive UHMWPE composites that vary consistently and predictably with applied strain, which could have a variety of biomedical and industrial applications.

References

1.
Farrar
,
D. F.
, and
Brain
,
A.
,
1997
, “
The Microstructure of Ultra-High Molecular Weight Polyethylene Used in Total Joint Replacements
,”
Biomaterials
,
18
(
24
), pp.
1677
1685
.
2.
Gunther
,
J.
, and
Rose
,
R. M.
,
1994
, “
Long-Term Performance and Wear of Ultrahigh-Molecular-Weight Polyethylene in Total Joint Replacement Prostheses: A Brief Overview and Perspective
,”
J. Long. Term Eff. Med. Implants
,
4
(
4
), pp.
157
175
.https://www.ncbi.nlm.nih.gov/pubmed/10155138?dopt=Abstract
3.
Wang
,
A.
,
Sun
,
D. C.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1995
, “
Wear Mechanisms of UHMWPE in Total Joint Replacements
,”
Wear
,
181–183
, pp.
241
249
.
4.
Costa
,
L.
,
Jacobson
,
K.
,
Bracco
,
P.
, and
Brach del Prever
,
E. M.
,
2002
, “
Oxidation of Orthopaedic UHMWPE
,”
Biomaterials
,
23
(
7
), pp.
1613
1624
.
5.
Bracco
,
P.
,
Bellare
,
A.
,
Bistolfi
,
A.
, and
Affatato
,
S.
,
2017
, “
Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review
,”
Materials
,
10
(
7
), pp. 1–22.
6.
Kurtz
,
S. M.
,
2016
,
UHMWPE Biomaterials Handbook
,
Elsevier
, Waltham, MA.
7.
Dumitriu
,
S.
, (
2002
,
Polymeric Biomaterials
,
Marcel Dekker
,
New York
.
8.
Wang
,
S.
, and
Ge
,
S.
,
2007
, “
The Mechanical Property and Tribological Behavior of UHMWPE: Effect of Molding Pressure
,”
Wear
,
263
(
7–12
), pp.
949
956
.
9.
Reinitz
,
S. D.
,
Engler
,
A. J.
,
Carlson
,
E. M.
, and
Van Citters
,
D. W.
,
2016
, “
Equal Channel Angular Extrusion of Ultra-High Molecular Weight Polyethylene
,”
Mater. Sci. Eng. C
,
67
, pp.
623
628
.
10.
Segal, V. M., 1995, “
Materials Processing by Simple Shear
,”
Mater. Sci. Eng. A.
,
197
(2), pp. 157–164.
11.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
2006
, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
,
51
(
7
), pp.
881
981
.
12.
Iwahashi
,
Y.
,
Wang
,
J.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
,
1996
, “
Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials
,”
Scr. Mater.
,
35
(
2
), pp.
143
146
.
13.
Van Citters
,
D.
,
2012
, “
Angular Extrusion for Polymer Consolidation
,” Patent No. US8642723B2.
14.
Narkis
,
M.
,
Zilberman
,
M.
, and
Siegmann
,
A.
,
1998
, “
On the ‘Curiosity’ of Electrically Conductive Melt Processed Doped‐Polyaniline/Polymer Blends Versus Carbon‐Black/Polymer Compounds
,”
Polym. Adv. Technol.
,
8
(
8
), pp.
525
528
.
15.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, and
Gun'ko
,
Y. K.
,
2006
, “
Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites
,”
Carbon
,
44
(
9
), pp.
1624
1652
.
16.
Bauhofer
,
W.
, and
Kovacs
,
J. Z.
,
2009
, “
A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites
,”
Compos. Sci. Technol.
,
69
(
10
), pp.
1486
1498
.
17.
Deng
,
H.
,
Lin
,
L.
,
Ji
,
M.
,
Zhang
,
S.
,
Yang
,
M.
, and
Fu
,
Q.
,
2014
, “
Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials
,”
Top. Issue Electroact. Polym.
,
39
(
4
), pp.
627
655
.
18.
Zhang
,
W.
,
Dehghani-Sanij
,
A. A.
, and
Blackburn
,
R. S.
,
2007
, “
Carbon Based Conductive Polymer Composites
,”
J. Mater. Sci.
,
42
(
10
), pp.
3408
3418
.
19.
Deplancke
,
T.
,
Lame
,
O.
,
Barrau
,
S.
,
Ravi
,
K.
, and
Dalmas
,
F.
,
2017
, “
Impact of Carbon Nanotube Prelocalization on the Ultra-Low Electrical Percolation Threshold and on the Mechanical Behavior of Sintered UHMWPE-Based Nanocomposites
,”
Polymers
,
111
, pp.
204
213
.
20.
Hao
,
X.
,
Gai
,
G.
,
Yang
,
Y.
,
Zhang
,
Y.
, and
Nan
,
C.
,
2008
, “
Development of the Conductive Polymer Matrix Composite With Low Concentration of the Conductive Filler
,”
Mater. Chem. Phys.
,
109
(
1
), pp.
15
19
.
21.
Gupta
,
T. K.
,
Choosri
,
M.
,
Varadarajan
,
K. M.
, and
Kumar
,
S.
,
2018
, “
Self-Sensing and Mechanical Performance of CNT/GNP/UHMWPE Biocompatible Nanocomposites
,”
J. Mater. Sci.
,
53
(
11
), pp.
7939
7952
.
22.
Wang
,
K.
,
Liu
,
M.
,
Song
,
C.
,
Shen
,
L.
,
Chen
,
P.
, and
Xu
,
S.
,
2018
, “
Surface-Conductive UHMWPE Fibres Via In Situ Reduction and Deposition of Graphene Oxide
,”
Mater. Des.
,
148
, pp.
167
176
.
23.
Chen
,
Y.
,
Qi
,
Y.
,
Tai
,
Z.
,
Yan
,
X.
,
Zhu
,
F.
, and
Xue
,
Q.
,
2012
, “
Preparation, Mechanical Properties and Biocompatibility of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites
,”
Eur. Polym. J.
,
48
(
6
), pp.
1026
1033
.
24.
Tai
,
Z.
,
Chen
,
Y.
,
An
,
Y.
,
Yan
,
X.
, and
Xue
,
Q.
,
2012
, “
Tribological Behavior of UHMWPE Reinforced With Graphene Oxide Nanosheets
,”
Tribol. Lett.
,
46
(
1
), pp.
55
63
.
25.
Flandin
,
L.
,
Bréchet
,
Y.
, and
Cavaillé
,
J.-Y.
,
2001
, “
Electrically Conductive Polymer Nanocomposites as Deformation Sensors
,”
Compos. Sci. Technol.
,
61
(
6
), pp.
895
901
.
26.
Wu
,
Q.
,
Xu
,
Y.
,
Yao
,
Z.
,
Liu
,
A.
, and
Shi
,
G.
,
2010
, “
Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films
,”
ACS Nano
,
4
(
4
), pp.
1963
1970
.
27.
Wichmann
,
M. H. G.
,
Buschhorn
,
S. T.
,
Gehrmann
,
J.
, and
Schulte
,
K.
,
2009
, “
Piezoresistive Response of Epoxy Composites With Carbon Nanoparticles Under Tensile Load
,”
Phys. Rev. B
,
80
(
24
), p.
245437
.
28.
Lin
,
L.
,
Liu
,
S.
,
Zhang
,
Q.
,
Li
,
X.
,
Ji
,
M.
,
Deng
,
H.
, and
Fu
,
Q.
,
2013
, “
Towards Tunable Sensitivity of Electrical Property to Strain for Conductive Polymer Composites Based on Thermoplastic Elastomer
,”
ACS Appl. Mater. Interfaces
,
5
(
12
), pp.
5815
5824
.
29.
Calvert
,
P.
,
Duggal
,
D.
,
Patra
,
P.
,
Agrawal
,
A.
, and
Sawhney
,
A.
,
2008
, “
Conducting Polymer and Conducting Composite Strain Sensors on Textiles
,”
Mol. Cryst. Liq. Cryst.
,
484
(
1
), pp.
291/[657]
302/[668]
.
30.
D'Lima
,
D. D.
,
Fregly
,
B. J.
, and
Colwell
,
C. W.
,
2013
, “
Implantable Sensor Technology: Measuring Bone and Joint Biomechanics of Daily Life In Vivo
,”
Arthritis Res. Ther.
,
15
(
1
), p.
203
.
31.
Lahiri
,
D.
,
Dua
,
R.
,
Zhang
,
C.
,
de Socarraz-Novoa
,
I.
,
Bhat
,
A.
,
Ramaswamy
,
S.
, and
Agarwal
,
A.
,
2012
, “
Graphene Nanoplatelet-Induced Strengthening of Ultra High Molecular Weight Polyethylene and Biocompatibility In Vivo
,”
ACS Appl. Mater. Interfaces
,
4
(
4
), pp.
2234
2241
.
32.
Ren
,
P.-G.
,
Di
,
Y.-Y.
,
Zhang
,
Q.
,
Li
,
L.
,
Pang
,
H.
, and
Li
,
Z.-M.
, “
Composites of Ultrahigh-Molecular-Weight Polyethylene With Graphene Sheets and/or MWCNTs With Segregated Network Structure: Preparation and Properties
,”
Macromol. Mater. Eng
,
297
(
5
), pp.
437
443
.
33.
Martínez-Morlanes
,
M. J.
,
Castell
,
P.
,
Martínez-Nogués
,
V.
,
Martinez
,
M. T.
,
Alonso
,
P. J.
, and
Puértolas
,
J. A.
,
2011
, “
Effects of Gamma-Irradiation on UHMWPE/MWNT Nanocomposites
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
282
288
.
34.
Gao
,
J.-F.
,
Li
,
Z.-M.
,
Meng
,
Q.
, and
Yang
,
Q.
,
2008
, “
CNTs/UHMWPE Composites With a Two-Dimensional Conductive Network
,”
Mater. Lett
,
62
(
20
), pp.
3530
3532
.
35.
Osorio
,
J. G.
, and
Muzzio
,
F. J.
,
2015
, “
Evaluation of Resonant Acoustic Mixing Performance
,”
Powder Technol.
,
278
, pp.
46
56
.
36.
ASTM,
2014
, “
Standard Test Method for Tensile Properties of Plastics
,” ASTM International, West Conshohocken, PA, Standard No. D638-14.
37.
Olley
,
R. H.
, and
Bassett
,
D. C.
,
1982
, “
An Improved Permanganic Etchant for Polyolefins
,”
Polymers
,
23
(
12
), pp.
1707
1710
.
38.
Van Citters
,
D. W.
,
Kennedy
,
F. E.
, and
Collier
,
J. P.
,
2007
, “
Rolling Sliding Wear of UHMWPE for Knee Bearing Applications
,”
Wear
,
263
(
7–12
), pp.
1087
1094
.
39.
Chung
,
K. T.
,
Sabo
,
A.
, and
Pica
,
A. P.
,
1982
, “
Electrical Permittivity and Conductivity of Carbon Black‐Polyvinyl Chloride Composites
,”
J. Appl. Phys.
,
53
(
10
), pp.
6867
6879
.
40.
Mohanraj
,
G. T.
,
Chaki
,
T. K.
,
Chakraborty
,
A.
, and
Khastgir
,
D.
,
2004
, “
Effect of Some Service Conditions on the Electrical Resistivity of Conductive Styrene–Butadiene Rubber–Carbon Black Composites
,”
J. Appl. Polym. Sci.
,
92
(
4
), pp.
2179
2188
.
41.
Smuckler
,
J. H.
, and
Finnerty
,
P. M.
,
1974
, “
Performance of Conductive Carbon Blacks in a Typical Plastics System
,”
Fillers and Reinforcements for Plastics
, .,
American Chemical Society
,
Washington, DC
, pp.
171
183
.
42.
Spitalsky
,
Z.
,
Tasis
,
D.
,
Papagelis
,
K.
, and
Galiotis
,
C.
,
2010
, “
Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties
,”
Prog. Polym. Sci.
,
35
(
3
), pp.
357
401
.
43.
Gao
,
P.
, and
Mackley
,
M. R.
,
1994
, “
The Structure and Rheology of Molten Ultra-High-Molecular-Mass Polyethylene
,”
Polymers
,
35
(
24
), pp.
5210
5216
.
44.
Pickles
,
A. P.
,
Webber
,
R. S.
,
Alderson
,
K. L.
,
Neale
,
P. J.
, and
Evans
,
K. E.
,
1995
, “
The Effect of the Processing Parameters on the Fabrication of Auxetic Polyethylene—Part I: The Effect of Compaction Conditions
,”
J. Mater. Sci.
,
30
(
16
), pp.
4059
4068
.
45.
ASTM
,
2014
, “
Standard Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants
,” ASTM International, West Conshohocken, PA, Standard No. F648-14.
You do not currently have access to this content.