In this study, the effects of temperature, stress, and type of materials and their interactions on the creep rate and rupture time were investigated by using central composite design (CCD). An experimental plan for CCD with two numerical factors, one categorical factor, and two levels was used to optimize the required number of experiments. Temperatures of 800 and 900 °C and stresses of 250 and 450 MPa were selected as factors for GTD-111 and IN-738LC superalloys, respectively. Experimental and numerical results showed that the main effects of factors and their interactions are significant on the creep rate and rupture time. Among all factors, the effects of temperature and stress dominated other factors. Moreover, it was indicated that the combination between temperature and stress is much more effective on creep rate response than on rupture time. The high creep rate and the low rupture time values were obtained at the highest stress and temperature for IN-738LC. With the same experimental condition, creep rate values were the most and rupture time values were the least for IN-738LC in comparison with GTD-111.

References

1.
Schilke
,
P. W.
,
Foster
,
A. D.
,
Pepe
,
J. J.
, and
Beltran
,
A. M.
,
1992
, “
Advanced Materials Propel Progress in Land-Based Gas Turbines
,”
Adv. Mater. Process.
,
4
, pp.
22
30
.
2.
Daleo
,
J. A.
, and
Wilson
,
J. R.
,
1998
, “
GTD-111 Alloy Material Study
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
375
382
.
3.
Sajjadi
,
S. A.
, and
Nategh
,
S.
,
2001
, “
A High Temperature Deformation Mechanism Map for the High Performance Ni-Base Superalloy GTD-111
,”
Mater. Sci. Eng. A
,
307
, pp.
158
164
.
4.
Sajjadi
,
S. A.
,
Nategh
,
S.
, and
Guthrie
,
R. I. L.
,
2002
, “
Study of Microstructure and Mechanical Properties of High Performance Ni-Base Superalloy GTD-111
,”
Mater. Sci. Eng. A
,
325
, pp.
484
489
.
5.
Sajjadi
,
S. A.
,
Nategh
,
S.
, and
Isac
,
M.
,
2003
, “
High Temperature Tensile Behavior of the Ni-Base Superalloy GTD-111
,”
Can. Metall. Quart.
,
42
(
4
), pp.
489
494
.
6.
Nategh
,
S.
, and
Sajjadi
,
S. A.
,
2003
, “
Dislocation Network Formation During Creep in Ni-Base Superalloy GTD-111
,”
Mater. Sci. Eng. A
,
339
, pp.
103
108
.
7.
Brooks
,
C. R.
,
1982
, “
Heat Treatment, Structure and Properties of Nonferrous Alloys
,”
American Society for Metals
,
Metals Park, OH
.
8.
Bouse
,
G. K.
,
1996
, “
Eta (η) and Platelet Phases in Investment Cast Superalloys
,”
Proceedings of The Eighth International Symposium on Superalloys
,
Champion, PA
, pp.
163
172
.
9.
Sims
,
C. T.
,
Stoloff
,
N. S.
, and
Hagel
,
W. C.
,
1987
,
Superalloys II
,
Wiley-Interscience.
,
New York
.
10.
Betteridge
,
W.
, and
Heslop
,
J.
,
1974
, “
The Nimonic Alloys and Other Nickel-Base High Temperature Alloys
,” 2nd ed.,
Edward Arnold
,
Bristol, UK
.
11.
Pope
,
D. P.
, and
Ezz
,
S. S.
,
1984
, “
Mechanical Properties of Ni3AI and Nickel-Base Alloys with High Volume Fraction of γ′
,”
Int. Mater. Rev.
,
l29
, pp.
136
167
.
12.
Jianting
,
G.
,
Ranucci
,
D.
,
Picco
,
E.
, and
Strocchi
,
P. M.
,
1983
, “
An Investigation on The Creep and Fracture Behavior of Cast Nickel-Base Superalloy IN738-LC
,”
Metall. Trans. A
,
14
, pp.
2329
2335
.
13.
Razavi
,
S. H.
,
Mirdamadi
,
S. H.
,
Szpunar
,
J.
, and
Arabi
,
H.
,
2002
, “
Improvement of Age-Hardening Process of a Nickel-Base Superalloy, IN738-LC, by Induction Aging
,”
J. Mater. Sci.
,
37
, pp.
1461
1471
.
14.
Sajjadi
,
S. A.
,
Nategh
,
S.
,
Isac
,
M.
, and
Zebarjad
,
S. M.
,
2004
, “
Tensile Deformation Mechanisms at Different Temperatures in the Ni-Base Superalloy GTD-111
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1900
1904
.
15.
Picasso
,
A. C.
,
Marzocca
,
A. J.
, and
Alvarez
,
I.
,
1997
, “
Cross-Slip and Dislocation Climb in Nickel-Base Superalloys
,”
Mater. Sci. Eng. A
,
234–236
, pp.
1099
1102
.
16.
Cahn
,
R. W.
,
Haasen
,
P.
,
Kramer
,
E. J.
, and
Mughrabi
,
H.
,
1993
,
Materials Science and Technology, Plastic Deformation and Fracture of Materials
, Vol. 6,
Wiley-VCH Verlag GmbH.
,
New York
.
17.
Lupinc
,
V.
,
1982
, “
Creep Strengthening Mechanisms
,”
High Temperature Alloys for Gas Turbines
,
Reidel Publishing Co
.,
Dordrecht
, pp.
395
419
.
18.
Koul
,
A. K.
, and
Bruntaud
,
R.
,
1993
, “
Advanced Materials and Coatings for Combustion Turbines
,”
Proceedings of ASM 1993 Materials Congress
,
Pittsburgh, PA
, pp.
75
88
.
19.
Mukherji
,
D.
,
Jiao
,
F.
,
Chen
,
W.
, and
Wahi
,
R. P.
,
1991
, “
Stacking Fault Formation in γ′ Phase During Monotonic Deformation of IN-738LC at Elevated Temperatures
,”
Acta Metall. Mater.
,
39
(
7
), pp.
1515
1524
.
20.
Montgomery
,
D. C.
,
2013
,
Design and Analysis of Experiments
, 8th ed.,
Wiley
,
New York
.
21.
Stat Ease Inc.
,
2005
, design expert, version 7.0.0 software.
22.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,” ,
13
, pp.
1
45
.
23.
Box
,
G. E. P.
, and
Hunter
,
J. S.
,
1957
, “
Multi-Factor Experimental Designs for Exploring Response Surfaces
,”
Ann. Math. Stat.
,
28
(
1
), pp.
195
241
.
24.
Diler
,
E. A.
, and
Ipek
,
R.
,
2013
, “
Main and Interaction Effects of Matrix Particle Size, Reinforcement Particle Size and Volume Fraction on Wear Characteristics of Al–SiCp Composites Using Central Composite Design
,”
Compos. Part B-Eng.
,
50
, pp.
371
380
.
25.
Parappagoudar
,
M. B.
,
Pratihar
,
D. K.
, and
Datta
,
G. L.
,
2007
, “
Non-Linear Modelling Using Central Composite Design to Predict Green Sand Mould Properties
,”
P. I. Mech. Eng. B-J. Eng.
,
22
, pp.
881
895
.
26.
ASTM E139-11
,
2011
,
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
27.
Monkman
,
F. C.
, and
Grant
,
N. J.
,
1956
, “
An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests
,”
ASTM Proc.
,
56
, pp.
593
620
.
You do not currently have access to this content.