Abstract

Severely plastically deformed microstructures of pure copper were produced by subjecting cylindrical copper samples to high-pressure torsion. The effects of this procedure on introducing gradient microstructure and subsequent mechanical behavior were investigated by utilizing electron backscatter diffraction and performing Vickers hardness/tensile testing. A crystal plasticity-continuum dislocation dynamics modeling effort was performed to predict the mechanical performance of these samples. The model includes mechanisms based on the gradient of dislocation density and grain size, back stress fields of grain boundaries, dislocation density transmission across grain boundaries, and stress/strain gradient effects.

References

1.
Hamid
,
M.
,
Lyu
,
H.
, and
Zbib
,
H.
,
2018
, “
A Dislocation-Based Stress-Strain Gradient Plasticity Model for Strength and Ductility in Materials With Gradient Microstructures
,”
Philos. Mag.
,
98
(
32
), pp.
2896
2916
.
2.
Lyu
,
H.
,
Hamid
,
M.
,
Ruimi
,
A.
, and
Zbib
,
H. M.
,
2017
, “
Stress/Strain Gradient Plasticity Model for Size Effects in Heterogeneous Nano-Microstructures
,”
Int. J. Plast.
,
97
, pp.
46
63
.
3.
Kawasaki
,
M.
,
2013
, “
Different Models of Hardness Evolution in Ultrafine-Grained Materials Processed by High-Pressure Torsion
,”
J. Mater. Sci.
,
49
(
1
), pp.
18
34
.
4.
Liu
,
M.-P.
,
Jiang
,
T.-H.
,
Xie
,
X.-F.
,
Liu
,
Q.
,
Li
,
X.-F.
, and
Roven
,
H. J.
,
2014
, “
Microstructure Evolution and Dislocation Configurations in Nanostructured Al–Mg Alloys Processed by High Pressure Torsion
,”
Trans. Nonferrous Met. Soc. China
,
24
(
12
), pp.
3848
3857
.
5.
Mine
,
Y.
,
Haraguchi
,
D.
,
Horita
,
Z.
, and
Takashima
,
K.
,
2015
, “
High-Pressure Torsion of Metastable Austenitic Stainless Steel at Moderate Temperatures
,”
Philos. Mag. Lett.
,
95
(
5
), pp.
269
276
.
6.
Zhilyaev
,
A.
, and
Langdon
,
T.
,
2008
, “
Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
893
979
.
7.
Jamalian
,
M.
,
Hamid
,
M.
,
DeVincentis
,
N.
,
Buck
,
Q.
,
Zbib
,
H.
, and
Field
,
D. P.
,
2019
, “
Mechanical Properties and Microstructures of Copper Subjected to High-Pressure Torsion
,”
Mater. Sci. Eng. A
,
756
, pp.
142
148
.
8.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
,
1993
, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic-Deformation and Texture Development of Polycrystals—Application to Zirconium Alloys
,”
Acta Metall. Mater.
,
41
(
9
), pp.
2611
2624
.
9.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
,
1994
, “
A Self-Consistent Viscoplastic Model—Prediction of Rolling Textures of Anisotropic Polycrystals
,”
Mater. Sci. Eng. A
,
175
(
1–2
), pp.
71
82
.
10.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
,
1998
, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
113
127
.
11.
Askari
,
H.
,
Young
,
J.
,
Field
,
D. P.
,
Kridli
,
G.
,
Li
,
D. S.
, and
Zbib
,
H.
,
2014
, “
A Study of the Hot and Cold Deformation of Twin-Roll Cast Magnesium Alloy AZ31
,”
Philos. Mag.
,
94
(
4
), pp.
381
403
.
12.
Hamid
,
M.
,
Lyu
,
H.
,
Schuessler
,
J. B.
,
Wo
,
P.
, and
Zbib
,
H.
,
2017
, “
Modeling and Characterization of Grain Boundaries and Slip Transmission in Dislocation Density-Based Crystal Plasticity
,”
Crystals
,
7
(
6
), p.
152
.
13.
Tome
,
C. N.
, and
Lebensohn
,
R. A.
,
2009
,
Manual for Code Visco Plastic Self Consistent (VPSC)
,
University of California at Los Alamos National Laboratory
,
Los Alamos, NM
.
14.
Bailey
,
J. E.
, and
Hirsch
,
P. B.
,
1960
, “
The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver
,”
Philos. Mag.
,
5
(
53
), pp.
485
497
.
15.
Lyu
,
H.
,
Ruimi
,
A.
, and
Zbib
,
H. M.
,
2015
, “
A Dislocation-Based Model for Deformation and Size Effect in Multi-Phase Steels
,”
Int. J. Plast.
,
72
, pp.
44
59
.
16.
Li
,
D.
,
Zbib
,
H. M.
,
Sun
,
X.
, and
Khaleel
,
M.
,
2014
, “
Predicting Plastic Flow and Irradiation Hardening of Iron Single Crystal With Mechanism-Based Continuum Dislocation Dynamics
,”
Int. J. Plast.
,
52
, pp.
3
17
.
17.
Werner
,
E.
, and
Prantl
,
W.
,
1988
, “
Statistical Treatment of Measured Orientation Relationships in Orientation Space
,”
J. Appl. Crystallogr.
,
21
(
4
), pp.
311
316
.
18.
Werner
,
E.
, and
Prantl
,
W.
,
1990
, “
Slip Transfer Across Grain and Phase Boundaries
,”
Acta Mater.
,
38
(
3
), pp.
533
537
.
19.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
,
1
(
2
), pp.
153
162
.
20.
Kroner
,
E.
,
1958
,
Kontinuums Theorie der Verzetszungen und Eigen Spannungen
,
Springer
,
Berlin
.
21.
Gedeon
,
M.
,
2010
, “
Grain size and material strength
,” Technical Tidbits,
Brush Wellman Alloy Products
,
Mayfield Heights, OH
.
22.
Wu
,
X.
, and
Zhu
,
Y.
,
2017
, “
Heterogeneous Materials: A New Class of Materials With Unprecedented Mechanical Properties
,”
Mater. Res. Lett.
,
5
(
8
), pp.
527
532
.
23.
Zhang
,
P.
,
Balint
,
D.
, and
Lin
,
J.
,
2011
, “
Controlled Poisson Voronoi Tessellation for Virtual Grain Structure Generation: A Statistical Evaluation
,”
Philos. Mag.
,
91
(
36
), pp.
4555
4573
.
24.
Field
,
D. P.
,
Merriman
,
C. C.
,
Allain-Bonasso
,
N.
, and
Wagner
,
F.
,
2012
, “
Quantification of Dislocation Structure Heterogeneity in Deformed Polycrystals by EBSD
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
2
), p.
024007
.
You do not currently have access to this content.