Abstract
Severely plastically deformed microstructures of pure copper were produced by subjecting cylindrical copper samples to high-pressure torsion. The effects of this procedure on introducing gradient microstructure and subsequent mechanical behavior were investigated by utilizing electron backscatter diffraction and performing Vickers hardness/tensile testing. A crystal plasticity-continuum dislocation dynamics modeling effort was performed to predict the mechanical performance of these samples. The model includes mechanisms based on the gradient of dislocation density and grain size, back stress fields of grain boundaries, dislocation density transmission across grain boundaries, and stress/strain gradient effects.
Issue Section:
Special Issue: The Behavior of Crystalline Materials: In Honor of Professor Hussein Zbib
References
1.
Hamid
, M.
, Lyu
, H.
, and Zbib
, H.
, 2018
, “A Dislocation-Based Stress-Strain Gradient Plasticity Model for Strength and Ductility in Materials With Gradient Microstructures
,” Philos. Mag.
, 98
(32
), pp. 2896
–2916
. 2.
Lyu
, H.
, Hamid
, M.
, Ruimi
, A.
, and Zbib
, H. M.
, 2017
, “Stress/Strain Gradient Plasticity Model for Size Effects in Heterogeneous Nano-Microstructures
,” Int. J. Plast.
, 97
, pp. 46
–63
. 3.
Kawasaki
, M.
, 2013
, “Different Models of Hardness Evolution in Ultrafine-Grained Materials Processed by High-Pressure Torsion
,” J. Mater. Sci.
, 49
(1
), pp. 18
–34
. 4.
Liu
, M.-P.
, Jiang
, T.-H.
, Xie
, X.-F.
, Liu
, Q.
, Li
, X.-F.
, and Roven
, H. J.
, 2014
, “Microstructure Evolution and Dislocation Configurations in Nanostructured Al–Mg Alloys Processed by High Pressure Torsion
,” Trans. Nonferrous Met. Soc. China
, 24
(12
), pp. 3848
–3857
. 5.
Mine
, Y.
, Haraguchi
, D.
, Horita
, Z.
, and Takashima
, K.
, 2015
, “High-Pressure Torsion of Metastable Austenitic Stainless Steel at Moderate Temperatures
,” Philos. Mag. Lett.
, 95
(5
), pp. 269
–276
. 6.
Zhilyaev
, A.
, and Langdon
, T.
, 2008
, “Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications
,” Prog. Mater. Sci.
, 53
(6
), pp. 893
–979
. 7.
Jamalian
, M.
, Hamid
, M.
, DeVincentis
, N.
, Buck
, Q.
, Zbib
, H.
, and Field
, D. P.
, 2019
, “Mechanical Properties and Microstructures of Copper Subjected to High-Pressure Torsion
,” Mater. Sci. Eng. A
, 756
, pp. 142
–148
. 8.
Lebensohn
, R. A.
, and Tomé
, C. N.
, 1993
, “A Self-Consistent Anisotropic Approach for the Simulation of Plastic-Deformation and Texture Development of Polycrystals—Application to Zirconium Alloys
,” Acta Metall. Mater.
, 41
(9
), pp. 2611
–2624
. 9.
Lebensohn
, R. A.
, and Tomé
, C. N.
, 1994
, “A Self-Consistent Viscoplastic Model—Prediction of Rolling Textures of Anisotropic Polycrystals
,” Mater. Sci. Eng. A
, 175
(1–2
), pp. 71
–82
. 10.
Zbib
, H. M.
, Rhee
, M.
, and Hirth
, J. P.
, 1998
, “On Plastic Deformation and the Dynamics of 3D Dislocations
,” Int. J. Mech. Sci.
, 40
(2–3
), pp. 113
–127
. 11.
Askari
, H.
, Young
, J.
, Field
, D. P.
, Kridli
, G.
, Li
, D. S.
, and Zbib
, H.
, 2014
, “A Study of the Hot and Cold Deformation of Twin-Roll Cast Magnesium Alloy AZ31
,” Philos. Mag.
, 94
(4
), pp. 381
–403
. 12.
Hamid
, M.
, Lyu
, H.
, Schuessler
, J. B.
, Wo
, P.
, and Zbib
, H.
, 2017
, “Modeling and Characterization of Grain Boundaries and Slip Transmission in Dislocation Density-Based Crystal Plasticity
,” Crystals
, 7
(6
), p. 152
. 13.
Tome
, C. N.
, and Lebensohn
, R. A.
, 2009
, Manual for Code Visco Plastic Self Consistent (VPSC)
, University of California at Los Alamos National Laboratory
, Los Alamos, NM
.14.
Bailey
, J. E.
, and Hirsch
, P. B.
, 1960
, “The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver
,” Philos. Mag.
, 5
(53
), pp. 485
–497
. 15.
Lyu
, H.
, Ruimi
, A.
, and Zbib
, H. M.
, 2015
, “A Dislocation-Based Model for Deformation and Size Effect in Multi-Phase Steels
,” Int. J. Plast.
, 72
, pp. 44
–59
. 16.
Li
, D.
, Zbib
, H. M.
, Sun
, X.
, and Khaleel
, M.
, 2014
, “Predicting Plastic Flow and Irradiation Hardening of Iron Single Crystal With Mechanism-Based Continuum Dislocation Dynamics
,” Int. J. Plast.
, 52
, pp. 3
–17
. 17.
Werner
, E.
, and Prantl
, W.
, 1988
, “Statistical Treatment of Measured Orientation Relationships in Orientation Space
,” J. Appl. Crystallogr.
, 21
(4
), pp. 311
–316
. 18.
Werner
, E.
, and Prantl
, W.
, 1990
, “Slip Transfer Across Grain and Phase Boundaries
,” Acta Mater.
, 38
(3
), pp. 533
–537
. 19.
Nye
, J. F.
, 1953
, “Some Geometrical Relations in Dislocated Crystals
,” Acta Metall.
, 1
(2
), pp. 153
–162
. 20.
Kroner
, E.
, 1958
, Kontinuums Theorie der Verzetszungen und Eigen Spannungen
, Springer
, Berlin
.21.
Gedeon
, M.
, 2010
, “Grain size and material strength
,” Technical Tidbits, Brush Wellman Alloy Products
, Mayfield Heights, OH
.22.
Wu
, X.
, and Zhu
, Y.
, 2017
, “Heterogeneous Materials: A New Class of Materials With Unprecedented Mechanical Properties
,” Mater. Res. Lett.
, 5
(8
), pp. 527
–532
. 23.
Zhang
, P.
, Balint
, D.
, and Lin
, J.
, 2011
, “Controlled Poisson Voronoi Tessellation for Virtual Grain Structure Generation: A Statistical Evaluation
,” Philos. Mag.
, 91
(36
), pp. 4555
–4573
. 24.
Field
, D. P.
, Merriman
, C. C.
, Allain-Bonasso
, N.
, and Wagner
, F.
, 2012
, “Quantification of Dislocation Structure Heterogeneity in Deformed Polycrystals by EBSD
,” Modell. Simul. Mater. Sci. Eng.
, 20
(2
), p. 024007
. Copyright © 2021 by ASME
You do not currently have access to this content.