Abstract

A novel patterned-void structure is developed to improve the fatigue life compared with conventional circular cooling holes typically used in gas turbine components exposed to high temperatures. The distinctive S-shape of the voids and their specific arrangement enable manipulation of the structure's macroscopic stiffness and Poisson's ratio. An investigation of the isothermal and thermomechanical fatigue (TMF) properties of the proposed structure is carried out in strain-controlled conditions. The testing is performed on tubular specimens machined from a Nickel-based superalloy commonly used in gas turbine combustion systems (HAYNES 230®). The isothermal fatigue tests, performed at 300 °C, 600 °C, and 800 °C, demonstrated an increase in crack-initiation life of the proposed structure by a factor of up to 28 compared with the standard circular holes. The thermomechanical fatigue tests, performed across temperature ranges 300 °C–750 °C and 300 °C–850 °C, and using in-phase (IP) and out-of-phase (OP) strain ratios, demonstrated an increase in crack-initiation life by a factor of up to 16. The life after crack initiation (crack-propagation mode) was also shown to be longer for the proposed structure, which is attributed to a crack-arresting behavior inherent to the structure.

References

1.
Ishizaka
,
K.
,
Saitoh
,
K.
,
Yuri
,
M.
,
Ito
,
E.
, and
Masada
,
J.
,
2017
, “
Key Technologies for 1700 °C Class Ultra High Temperature Gas Turbine
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
54
(
7
), pp.
23
32
.
2.
Barrett
,
R. A.
,
O’Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2017
, “
A Physically-Based Constitutive 500 Model for High Temperature Microstructural Degradation Under Cyclic Deformation
,”
Int. J. Fatigue
,
100
, pp.
388
406
.
3.
Shanian
,
A.
,
Jette
,
F.-X.
,
Salehii
,
M.
,
Pham
,
M. Q.
,
Schaenzer
,
M.
,
Bourgeois
,
G.
,
Bertoldi
,
K.
,
Gross
,
A.
,
Javid
,
F.
,
Backman
,
D.
,
Yandt
,
S.
,
Gerendas
,
M.
,
Meis
,
T.
,
Knobloch
,
K.
,
Bake
,
F.
, and
Peitsch
,
D.
,
2019
, “
Application of Multifunctional Mechanical Metamaterials
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900084
.
4.
Taylor
,
M.
,
Francesconi
,
L.
,
Gerendàs
,
M.
,
Shanian
,
A.
,
Carson
,
C.
, and
Bertoldi
,
K.
,
2014
, “
Low Porosity Metallic Periodic Structures With Negative Poisson’s Ratio
,”
Adv. Mater.
,
26
(
15
), pp.
2365
2370
.
5.
Javid
,
F.
,
Liu
,
J.
,
Rafsanjani
,
A.
,
Schaenzer
,
M.
,
Pham
,
M. Q.
,
Backman
,
D.
,
Yandt
,
S.
,
Innes
,
M. C.
,
Booth-Morrison
,
C.
,
Gerendas
,
M.
,
Scarinci
,
T.
,
Shanian
,
A.
, and
Bertoldi
,
K.
,
2017
, “
On the Design of Porous Structures With Enhanced Fatigue Life
,”
Extreme Mech. Lett.
,
16
, pp.
13
17
.
7.
ASTM E606/E606M-19e1
,
2019
,
Standard Test Method for Strain-Controlled Fatigue Testing
,
ASTM International
,
West Conshohocken, PA
. http://www.astm.org
8.
Fahrmann
,
M. G.
, and
Srivastava
,
S. K.
,
2014
, “
Low Cycle Fatigue Behavior of Haynes 230 Alloy
,”
Mater. High Temp.
,
31
(
3
), pp.
221
225
.
9.
Barrett
,
R.
,
O’Donoghue
,
P.
, and
Leen
,
S.
,
2013
, “
An Improved Unified Viscoplastic Constitutive Model for Strain-Rate Sensitivity in High Temperature Fatigue
,”
Int. J. Fatigue
,
48
, pp.
192
204
.
10.
Lu
,
Y.-L.
,
Liaw
,
P.
,
Chen
,
L.
,
Wang
,
G.
,
Benson
,
M.
,
Thompson
,
S.
,
Blust
,
J.
,
Browning
,
P.
,
Bhattacharya
,
A.
,
Aurrecoechea
,
J.
, and
Klarstrom
,
D.
,
2006
, “
Tensile-Hold Effects on High-Temperature Fatigue-Crack Growth in Nickel-Based Hastelloy (r) x Alloy
,”
Mater. Sci. Eng. A
,
433
(
1–2
), pp.
114
120
.
11.
Ahmed
,
R.
,
Barrett
,
P. R.
, and
Hassan
,
T.
,
2016
, “
Unified Viscoplasticity Modeling for Isothermal Low-Cycle Fatigue and Fatigue-Creep Stress–Strain Responses of Haynes 230
,”
Int. J. Solids Struct.
,
88–89
, pp.
131
145
.
12.
Shenoy
,
M. M.
,
Gordon
,
A. P.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
,
2005
, “
Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy
,”
ASME J. Eng. Mater. Technol.
,
127
(
3
), pp.
325
336
.
13.
Feltner
,
C. E.
, and
Morrow
,
J. D.
,
1961
, “
Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture
,”
ASME J. Basic Eng.
,
83
(
1
), pp.
15
22
.
14.
Burck
,
L. H.
, and
Rau
,
C. A.
,
1973
, “
Fatigue Crack Propagation From Small Holes in Linear Arrays
,”
Int. J. Fract.
,
9
, pp.
43
51
.
15.
Rau
,
C.
, and
Burck
,
L.
,
1971
, “
Fatigue of Nickel-Base Superalloy Sheets Containing Various Diameter Small Holes
,”
Eng. Fract. Mech.
,
2
(
3
), pp.
211
220
.
You do not currently have access to this content.