Abstract

To scrupulously predict the creep-fatigue life of materials, a creep life prediction model is first proposed in this study considering real-time creep damage derived from the Kachanov creep damage model; second, combined with the Chaboche fatigue damage model and the nonlinear coupling mechanism of continuous damage mechanics, a creep-fatigue life prediction model of material is ulteriorly presented in this paper; finally, the effectiveness of the creep-fatigue life model is corroborated by experiment data of DZ125, whose prediction results are in the ± 2.0 dispersion zone and then the creep-fatigue life of the turbine blade is calculated to compare with the experimental results of the blade specimen to further prove the practicability, whose error is about 3.2%, which can provide a theoretical reference for the damage prediction, durability analysis, and life prediction of the turbine blade.

References

1.
Wang
,
X. W.
,
Zhang
,
W.
,
Gong
,
J. M.
, and
Wahab
,
M.
,
2018
, “
Low Cycle Fatigue and Creep Fatigue Interaction Behavior of 9Cr-0.5 Mo-1.8 WV-Nb Heat-Resistant Steel at High Temperature
,”
J. Nucl. Mater.
,
505
, pp.
73
84
.
2.
Cho
,
N. K.
,
Chen
,
H. F.
,
Boyle
,
J. T.
, and
Xuan
,
F. Z.
,
2018
, “
Enhanced Fatigue Damage Under Cyclic Thermo-Mechanical Loading at High Temperature by Structural Creep Recovery Mechanism
,”
Int. J. Fatigue
,
113
, pp.
149
159
.
3.
Han
,
L.
,
Li
,
P.
,
Yu
,
S.
,
Chen
,
C.
,
Fei
,
C.
, and
Lu
,
C.
,
2022
, “
Creep/Fatigue Accelerated Failure of Ni-Based Superalloy Turbine Blade: Microscopic Characteristics and Void Migration Mechanism
,”
Intl. J. Fatigue
,
154
, p.
106558
.
4.
Masuoka
,
T.
, and
Riccius
,
J. R.
,
2020
, “
Life Evaluation of a Combustion Chamber by Thermomechanical Fatigue Panel Tests Based on a Creep Fatigue and Ductile Damage Model
,”
Int. J. Damage Mech.
,
29
(
2
), pp.
226
245
.
5.
Kaustav
,
B.
,
Sivaprasad
,
S.
,
Kar
,
S.
, and
Tarafder
,
S.
,
2018
, “
Creep Fatigue Interaction Under Different Test Cariables: Mechanics and Mechanisms
,”
J. Test. Eval.
,
46
(
6
), pp.
2521
2539
.
6.
Ding
,
B.
,
Ren
,
W. L.
,
Peng
,
J. C.
,
Zhong
,
Y. B.
, and
Yu
,
J. B.
,
2018
, “
Influence of Dwell Time on the Creep–Fatigue Behavior of a Directionally Solidified Ni-Based Superalloy DZ445 at 850°C
,”
Mater. Sci. Eng. A
,
725
, pp.
319
328
.
7.
Hosseini
,
E.
,
Kalyanasundaram
,
V.
,
Li
,
X.
, and
Holdsworth
,
S. R.
,
2018
, “
Effect of Prior Deformation on the Subsequent Creep and Anelastic Recovery Behaviour of an Advanced Martensitic Steel
,”
Mater. Sci. Eng. A
,
717
, pp.
68
77
.
8.
Zhang
,
S. L.
,
Xuan
,
F. Z.
,
Guo
,
S. J.
, and
Zhao
,
P.
,
2017
, “
The Role of Anelastic Recovery in the Creep-Fatigue Interaction of 9–12% Cr Steel at High Temperature
,”
Int. J. Mech. Sci.
,
122
, pp.
95
103
.
9.
Payten
,
W.
,
Dean
,
D.
, and
Snowden
,
K.
,
2010
, “
A Strain Energy Density Method for the Prediction of Creep–Fatigue Damage in High Temperature Components
,”
Mater. Sci. Eng. A
,
527
(
7–8
), pp.
1920
1925
.
10.
Ferezqi
,
H.
,
Shariati
,
M.
, and
Saeid
,
H.
,
2018
, “
The Assessment of Elastic Follow-up Effects on Cyclic Accumulation of Inelastic Strain Under Displacement-Control Loading
,”
Iran. J. Sci. Technol.: Trans. Mech. Eng.
,
42
(
2
), pp.
127
135
.
11.
Wang
,
R. Z.
,
Guo
,
S. J.
,
Chen
,
H. F.
,
Wen
,
J. F.
,
Zhang
,
X. C.
, and
Tu
,
S. T.
,
2019
, “
Multi-Axial Creep-Fatigue Life Prediction Considering History-Dependent Damage Evolution: A New Numerical Procedure and Experimental Validation
,”
J. Mech. Phys. Solids
,
131
, pp.
313
336
.
12.
Wong
,
E.
,
2019
, “
A New Creep Fatigue Model for Solder Joints
,”
Microelectron. Reliab.
,
98
, pp.
153
160
.
13.
Shlyannikov
,
V.
,
2019
, “
Creep–Fatigue Crack Growth Rate Prediction Based on Fracture Damage Zone Models
,”
Eng. Fract. Mech.
,
214
, pp.
449
463
.
14.
Pandey
,
V.
,
Samant
,
S.
,
Singh
,
I. V.
, and
Mishra
,
B.
,
2020
, “
An Improved Methodology Based on Continuum Damage Mechanics and Stress Triaxiality to Capture the Constraint Effect During Fatigue Crack Propagation
,”
Int. J. Fatigue
,
140
, p.
105823
.
15.
Li
,
Z. L.
,
Shi
,
D. Q.
,
Li
,
S. L.
,
Yang
,
X. G.
, and
Miao
,
G. L.
,
2019
, “
A Systematical Weight Function Modified Critical Distance Method to Estimate the Creep-Fatigue Life of Geometrically Different Structures
,”
Int. J. Fatigue
,
126
, pp.
6
19
.
16.
Ji
,
D. M.
,
Ren
,
J. X.
, and
Zhang
,
L. C.
,
2016
, “
A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density
,”
J. Mater. Eng. Perform.
,
25
(
11
), pp.
4868
4874
.
17.
Su
,
S. N.
,
Akkara
,
F.
,
Thaper
,
R.
,
Alkhazali
,
A.
,
Hamasha
,
M.
, and
Hamasha
,
S.
,
2019
, “
A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040802
.
18.
Kumar
,
J.
,
Singh
,
A.
,
Ganesh Sundara Raman
,
S.
, and
Kumar
,
V.
,
2017
, “
Creep-Fatigue Damage Modeling in Ti-6Al-4V Alloy: A Mechanistic Approach
,”
Int. J. Fatigue
,
98
, pp.
62
67
.
19.
Zhu
,
S. P.
,
Huang
,
H. Z.
,
Liu
,
Y. Z.
,
Yuan
,
R.
, and
He
,
L. P.
,
2013
, “
An Efficient Life Prediction Methodology for Low Cycle Fatigue–Creep Based on Ductility Exhaustion Theory
,”
Int. J. Damage Mech.
,
22
(
4
), pp.
556
571
.
20.
Liu
,
H. F.
,
Yang
,
X. Y.
,
Jiang
,
L. J.
,
Lv
,
S. T.
,
Huang
,
T.
, and
Yang
,
Y.
,
2020
, “
Fatigue-Creep Damage Interaction Model of Asphalt Mixture Under the Semi-Sine Cycle Loading
,”
Constr. Build. Mater.
,
251
, p.
119070
.
21.
Liu
,
N.
,
Cui
,
X. D.
,
Xiao
,
J.
,
Lua
,
J.
, and
Phan
,
N.
,
2020
, “
A Simplified Continuum Damage Mechanics Based Modeling Strategy for Cumulative Fatigue Damage Assessment of Metallic Bolted Joints
,”
Int. J. Fatigue
,
131
, p.
105302
.
22.
Shi
,
C. X.
,
Zhong
,
Z. Y.
, and
Feng
,
D.
,
2012
,
China Superalloys Handbook
,
China Zhijian Publishing House and Standard Press of China
,
Beijing
.
23.
Dong
,
C. L.
, and
Yu
,
H. C.
,
2017
, “
Critical Plane Damage Method for Fatigue-Creep Life Prediction of Nickel-Based Superalloy
,”
J. Aeronaut. Mater.
,
37
(
4
), pp.
69
76
.
24.
Golub
,
V. P.
, and
Romanov
,
A. V.
,
1990
, “
Construction of Nonlinear Models of Damage Cumulation in Creep
,”
Strength Mater.
,
22
(
6
), pp.
786
792
.
25.
Chaboche
,
J. L.
, and
Lesne
,
P. M.
,
1988
, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
1
), pp.
1
17
.
26.
Huo
,
J. Z.
,
Sun
,
D. B.
,
Wu
,
H. Y.
, and
Wang
,
W. Z.
,
2019
, “
Multi-Axis Low-Cycle Creep/Fatigue Life Prediction of High-Pressure Turbine Blades Based on a New Critical Plane Damage Parameter
,”
Eng. Fail. Anal.
,
106
, p.
104159
.
27.
Shamsarjmand
,
M.
, and
Adibnazari
,
S.
,
2021
, “
Fatigue Life Prediction of Pre-Corroded AZ31 Magnesium Alloy Based on Surface Topology
,”
J. Mech. Eng. Sci.
, pp.
1
13
.
You do not currently have access to this content.