Abstract

This work presents a 3D progressive damage model based on Puck’s failure theory and linear damage evolution in fiber-reinforced plastic (FRP) laminates. It includes shear nonlinearity, in situ strengths, equivalent stress–strain, and mixed-mode fracture energy, and is implemented in abaqus/explicitTM through VUMAT subroutine. Various test cases were performed to validate the model and demonstrate its applications. The shear nonlinearity test shows that transverse compression retards matrix microcracking while transverse tension accelerates it. The open hole tension (OHT) test of laminates shows that delamination initiates around the holes and free edges, spreads the most, and propagates in different directions at different interfaces. Later, interfiber damage in 45 deg or −45 deg plies initiates and spreads at a slight inclination to the tip of the hole. Finally, fiber damage in 0 deg plies initiates at the tip of the hole, spreads the least, and propagates perpendicular to the loading direction. The ply-blocked laminates show around 30% higher strength and fracture strain than non-ply-blocked laminate due to delay in damage propagation, and are less sensitive to the hole size. Accordingly, their OHT strength reduces by 14.3% as opposed to 21.14% in the non-ply-blocked laminates, when the hole size increases from 6 to 9 mm. The damage location, magnitude, and propagation were corroborated with experimental findings in the literature.

References

1.
Orifici
,
A. C.
,
Herszberg
,
I.
, and
Thomson
,
R. S.
,
2008
, “
Review of Methodologies for Composite Material Modelling Incorporating Failure
,”
Composite Struct.
,
86
(
1–3
), pp.
194
210
.
2.
Koch
,
I.
,
Zscheyge
,
M.
,
Tittmann
,
K.
, and
Gude
,
M.
,
2017
, “
Numerical Fatigue Analysis of CFRP Components
,”
Composite Struct.
,
168
, pp.
392
401
.
3.
Ladevèze
,
P.
, and
Lubineau
,
G.
,
2001
, “
On a Damage Mesomodel for Laminates: Micro-Meso Relationships, Possibilities and Limits
,”
Compos. Sci. Technol.
,
61
(
15
), pp.
2149
2158
.
4.
Ladèveze
,
P.
, and
Lubineau
,
G.
,
2002
, “
An Enhanced Mesomodel for Laminates Based on Micromechanics
,”
Compos. Sci. Technol.
,
62
(
4
), pp.
533
541
.
5.
Lubineau
,
G.
, and
Ladevèze
,
P.
,
2008
, “
Construction of a Micromechanics-Based Intralaminar Mesomodel, and Illustrations in ABAQUS/Standard
,”
Comput. Mater. Sci.
,
43
(
1
), pp.
137
145
.
6.
Liu
,
P. F.
, and
Zheng
,
J. Y.
,
2010
, “
Recent Developments on Damage Modeling and Finite Element Analysis for Composite Laminates: A Review
,”
Mater. Des.
,
31
(
8
), pp.
3825
3834
.
7.
Li
,
S.
, and
Sitnikova
,
E.
,
2018
, “
A Critical Review on the Rationality of Popular Failure Criteria for Composites
,”
Composites Commun.
,
8
, pp.
7
13
.
8.
Hinton
,
M. J.
, and
Kaddour
,
A. S.
,
2013
, “
The Background to Part B of the Second World-Wide Failure Exercise: Evaluation of Theories for Predicting Failure in Polymer Composite Laminates Under Three-Dimensional States of Stress
,”
J. Compos. Mater.
,
47
(
6–7
), pp.
643
652
.
9.
Kaddour
,
A. S.
, and
Hinton
,
M. J.
,
2013
, “
Maturity of 3D Failure Criteria for Fibre-Reinforced Composites: Comparison Between Theories and Experiments: Part B of WWFE-II
,”
J. Compos. Mater.
,
47
(
6–7
), pp.
925
966
.
10.
Pinho
,
S. T.
,
Darvizeh
,
R.
,
Robinson
,
P.
,
Schuecker
,
C.
, and
Camanho
,
P. P.
,
2012
, “
Material and Structural Response of Polymer-Matrix Fibre-Reinforced Composites
,”
J. Compos. Mater.
,
46
(
19–20
), pp.
2313
2341
.
11.
Carrere
,
N.
,
Laurin
,
F.
, and
Maire
,
J. F.
,
2013
, “
Micromechanical-Based Hybrid Mesoscopic Three-Dimensional Approach for Non-Linear Progressive Failure Analysis of Composite Structures—Part B: Comparison With Experimental Data
,”
J. Compos. Mater.
,
47
(
6–7
), pp.
743
762
.
12.
Puck
,
A.
, and
Schürmann
,
H.
,
1998
, “
Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models
,”
Composite Sci. Technol.
,
58
, pp.
1045
1067
.
13.
Puck
,
A.
, and
Schurmann
,
H.
,
2002
, “
Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models
,”
Compos. Sci. Technol.
,
62
, pp.
1633
1662
.
14.
Cuntze
,
R. G.
,
2013
, “
Comparison Between Experimental and Theoretical Results Using Cuntze’s ‘failure Mode Concept’ Model for Composites Under Triaxial Loadings—Part B of the Second World-Wide Failure Exercise
,”
J. Compos. Mater.
,
47
(
6–7
), pp.
893
924
.
15.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fibre Composites
,”
ASME J. Appl. Mech.
,
47
, pp.
329
334
.
16.
Dávila
,
C. G.
,
Camanho
,
P. P.
, and
Rose
,
C. A.
,
2005
, “
Failure Criteria for FRP Laminates
,”
J. Compos. Mater.
,
39
(
4
), pp.
323
345
.
17.
Pinho
,
S. T.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
,
Iannucci
,
L.
, and
Robinson
,
P.
,
2005
, “
Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity
,” NASA/TM-2005-213530.
18.
Catalanotti
,
G.
,
Camanho
,
P. P.
, and
Marques
,
A. T.
,
2013
, “
Three-Dimensional Failure Criteria for Fiber-Reinforced Laminates
,”
Composite Struct.
,
95
, pp.
63
79
.
19.
Hahn
,
H. T.
, and
Tsai
,
S. W.
,
1973
, “
Nonlinear Elastic Behavior of Unidirectional Composite Laminae
,”
J. Compos. Mater.
,
7
(
1
), pp.
102
118
.
20.
Camanho
,
P. P.
,
Dávila
,
C. G.
,
Pinho
,
S. T.
,
Iannucci
,
L.
, and
Robinson
,
P.
,
2006
, “
Prediction of in Situ Strengths and Matrix Cracking in Composites Under Transverse Tension and In-Plane Shear
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
2
), pp.
165
176
.
21.
Dvorak
,
G. J.
, and
Laws
,
N.
,
1987
, “
Analysis of Progressive Matrix Cracking in Composite Laminates II. First Ply Failure
,”
J. Compos. Mater.
,
21
(
4
), pp.
309
329
.
22.
Barbero
,
E. J.
,
Cosso
,
F. A.
,
Roman
,
R.
, and
Weadon
,
T. L.
,
2013
, “
Determination of Material Parameters for Abaqus Progressive Damage Analysis of E-Glass Epoxy Laminates
,”
Comp. Part B: Eng.
,
46
, pp.
211
220
.
23.
Matzenmiller
,
A.
,
Lubliner
,
J.
, and
Taylor
,
R. L.
,
1995
, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
,
20
(
2
), pp.
125
152
.
24.
Lapczyk
,
I.
, and
Hurtado
,
J. A.
,
2007
, “
Progressive Damage Modeling in Fiber-Reinforced Materials
,”
Compos. Part A: Appl. Sci. Manuf
,
38
(
11
), pp.
2333
2341
.
25.
Maimi
,
P.
,
Camanho
,
P. P.
,
Mayugo
,
J. A.
, and
Davila
,
C. G.
,
2007
, “
A Continuum Damage Model for Composite Laminates: Part I—Constitutive Model
,”
Mech. Mater.
,
39
, pp.
897
908
.
26.
Maimi
,
P.
,
Camanho
,
P. P.
,
Mayugo
,
J. A.
, and
Davila
,
C. G.
,
2007
, “
A Continuum Damage Model for Composite Laminates: Part II—Computational Implementation and Validation
,”
Mech. Mater.
,
39
, pp.
909
919
.
27.
González
,
E. V.
,
Maimí
,
P.
,
Camanho
,
P. P.
,
Turon
,
A.
, and
Mayugo
,
J. A.
,
2012
, “
Simulation of Drop-Weight Impact and Compression After Impact Tests on Composite Laminates
,”
Composite Struct.
,
94
(
11
), pp.
3364
3378
.
28.
Ridha
,
M.
,
Wang
,
C. H.
,
Chen
,
B. Y.
, and
Tay
,
T. E.
,
2014
, “
Modelling Complex Progressive Failure in Notched Composite Laminates With Varying Sizes and Stacking Sequences
,”
Compos. Part A
,
58
, pp.
16
23
.
29.
Xiao
,
M.
,
Yongbo
,
Z.
,
Zhihua
,
W.
, and
Huimin
,
F.
,
2017
, “
Tensile Failure Analysis and Residual Strength Prediction of CFRP Laminates With Open Hole
,”
Compos. Part B
,
126
, pp.
49
59
.
30.
Su
,
Z. C.
,
Tay
,
T. E.
,
Ridha
,
M.
, and
Chen
,
B. Y.
,
2015
, “
Progressive Damage Modeling of Open-Hole Composite Laminates Under Compression
,”
Composite Struct.
,
122
, pp.
507
517
.
31.
Phadnis
,
V. A.
,
Makhdum
,
F.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Drilling in Carbon/Epoxy Composites: Experimental Investigations and Finite Element Implementation
,”
Compos. Part A
,
47
, pp.
41
51
.
32.
Giasin
,
K.
,
Ayvar-soberanis
,
S.
,
French
,
T.
, and
Phadnis
,
V.
,
2016
, “
3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and Experimental Hole Quality Analysis
,”
Appl. Composite Mater.
,
1
, pp.
1
26
.
33.
Feito
,
N.
,
López-Puente
,
J.
,
Santiuste
,
C.
, and
Miguélez
,
M. H.
,
2014
, “
Numerical Prediction of Delamination in CFRP Drilling
,”
Composite Struct.
,
108
(
1
), pp.
677
683
.
34.
Shi
,
Y.
,
Swait
,
T.
, and
Soutis
,
C.
,
2012
, “
Modelling Damage Evolution in Composite Laminates Subjected to Low Velocity Impact
,”
Composite Struct.
,
94
(
9
), pp.
2902
2913
.
35.
Singh
,
H.
,
Namala
,
K. K.
, and
Mahajan
,
P.
,
2015
, “
A Damage Evolution Study of E-Glass/Epoxy Composite Under Low Velocity Impact
,”
Compos. Part B
,
76
, pp.
235
248
.
36.
Tan
,
W.
,
Falzon
,
B. G.
,
Chiu
,
L. N.
, and
Price
,
M.
,
2015
, “
Predicting Low Velocity Impact Damage and Compression-After-Impact (CAI) Behaviour of Composite Laminates
,”
Compos. Part A: Appl. Sci. Manuf.
,
71
, pp.
212
226
.
37.
Tan
,
W.
,
Falzon
,
B. G.
, and
Price
,
M.
,
2015
, “
Predicting the Crushing Behaviour of Composite Material Using High-Fidelity Finite Element Modelling
,”
Int. J. Crashworthiness
,
20
(
1
), pp.
60
77
.
38.
Bogenfeld
,
R.
, and
Kreikemeier
,
J.
,
2017
, “
A Tensorial Based Progressive Damage Model for Fiber Reinforced Polymers
,”
Composite Struct.
,
168
, pp.
608
618
.
39.
Hallett
,
S. R.
,
blue
,
B. G.
,
Jiang
,
W. G.
,
Cheung
,
K. H.
, and
Wisnom
,
M. R.
,
2009
, “
The Open Hole Tensile Test: A Challenge for Virtual Testing of Composites
,”
Int. J. Fracture
,
158
(
2
), pp.
169
181
.
40.
Falcó
,
O.
,
Ávila
,
R. L.
,
Tijs
,
B.
, and
Lopes
,
C. S.
,
2018
, “
Modelling and Simulation Methodology for Unidirectional Composite Laminates in a Virtual Test Lab Framework
,”
Compos. Struct.
,
190
, pp.
137
159
.
41.
Chuaqui
,
T. R.
,
Nielsen
,
M. W.
,
Colton
,
J.
,
Butler
,
R.
, and
Rhead
,
A. T.
,
2021
, “
Effects of Ply Angle and Blocking on Open-Hole Tensile Strength of Composite Laminates: A Design and Certification Perspective
,”
Compos. Part B: Eng
,
207
, p.
108582
.
42.
Zhang
,
D.
,
Zheng
,
X.
, and
Wu
,
T.
,
2019
, “
Damage Characteristics of Open-Hole Laminated Composites Subjected to Longitudinal Loads
,”
Composite Struct.
,
230
, p.
111474
.
43.
Dean
,
A.
,
Asur Vijaya Kumar
,
P. K.
,
Reinoso
,
J.
,
Gerendt
,
C.
,
Paggi
,
M.
,
Mahdi
,
E.
, and
Rolfes
,
R.
,
2020
, “
A Multi Phase-Field Fracture Model for Long Fiber Reinforced Composites Based on the Puck Theory of Failure
,”
Composite Struct.
,
251
, p.
112446
.
44.
Reinoso
,
J.
,
Catalanotti
,
G.
,
Blázquez
,
A.
,
Areias
,
P.
,
Camanho
,
P. P.
, and
París
,
F.
,
2017
, “
A Consistent Anisotropic Damage Model for Laminated Fiber-Reinforced Composites Using the 3D-Version of the Puck Failure Criterion
,”
Int. J. Solids. Struct.
,
126–127
, pp.
37
53
.
45.
Wei
,
L.
,
Zhu
,
W.
,
Yu
,
Z.
,
Liu
,
J.
, and
Wei
,
X.
,
2019
, “
A New Three-Dimensional Progressive Damage Model for Fiber-Reinforced Polymer Laminates and Its Applications to Large Open-Hole Panels
,”
Compos. Sci. Technol.
,
182
, p.
107757
.
46.
Bek
,
L.
,
Kottner
,
R.
, and
Laš
,
V.
,
2021
, “
Material Model for Simulation of Progressive Damage of Composite Materials Using 3D Puck Failure Criterion
,”
Composite Struct.
,
259
, p.
113435
.
47.
Matthias Deuschle
,
H.
, and
Kröplin
,
B. H.
,
2012
, “
Finite Element Implementation of Puck’s Failure Theory for Fibre-Reinforced Composites Under Three-Dimensional Stress
,”
J. Compos. Mater.
,
46
(
19–20
), pp.
2485
2513
.
48.
Herakovich
,
C. T.
,
1998
,
Mechanics of Fibrous Composites
,
John Wiley and Sons, Inc.
,
New York
.
49.
Systèmes
,
D.
,
2016
, “
Abaqus 2016—User Subroutines Reference Guide
,”
SIMULIA
,
Providence, RI
.
50.
Kachanov
,
M.
,
1994
, “
On the Concept of Damage in Creep and in the Brittle-Elastic Range
,”
Int. J. Damage Mech.
,
3
(
4
), pp.
329
337
.
51.
Bazant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory Fracture of Concrete
,”
Mater. Struct.
,
16
, pp.
155
177
.
52.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.
53.
Pinho
,
S. T.
,
Iannucci
,
L.
, and
Robinson
,
P.
,
2006
, “
Physically Based Failure Models and Criteria for Laminated Fibre-Reinforced Composites With Emphasis on Fibre Kinking. Part II: FE Implementation
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
5
), pp.
766
777
.
54.
Parvizi
,
A.
, and
Bailey
,
J. E.
,
1978
, “
On Multiple Transverse Cracking in Glass Fibre Epoxy Cross-Ply Laminates
,”
J. Mater. Sci.
,
13
, pp.
195
201
.
55.
Maimí
,
P.
,
González
,
E. V.
, and
Camanho
,
P. P.
,
2014
, “
Comment to the Paper ‘Analysis of Progressive Matrix Cracking in Composite Laminates II. First Ply Failure’ by George J Dvorak and Norman Laws
,”
J. Compos. Mater.
,
48
(
9
), pp.
1139
1141
.
56.
Dassault
,
S.
,
2014
, “
Abaqus 6.14 Analysis User’s Manual
,”
Dassault Systems
:
Providence, RI
.
57.
Turon
,
A.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.
58.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
, pp.
439
449
.
You do not currently have access to this content.