Abstract

The effects of post-deposition heat treatment on the fatigue behavior of AA6061 processed by additive friction stir deposition (AFSD) were investigated for the first time in this work. A heat treatment to recover the T6 temper was performed on AFSD AA6061 is then subjected to strain-controlled fatigue and monotonic tension testing. Microstructural analysis revealed abnormal grain growth resulting in bimodal grain size distribution. Mechanical testing indicated a full recovery of the strength of the AA6061-T6 temper with comparable fatigue performance to the as-deposited AFSD AA6061. Fractography revealed deformation mechanisms in the post-deposition heat treatment not observed in the as-deposited samples, however, the fatigue resistance remained unchanged. A microstructure-sensitive fatigue model was implemented to capture the effects of the heat treatment process on the fatigue performance of the post-deposition heat-treated AFSD AA6061.

References

1.
Davis
,
J. R.
,
1993
,
Aluminum and Aluminum Alloys
,
ASM International
,
Novelty, OH
.
2.
Fulcher
,
B. A.
,
Leigh
,
D. K.
, and
Watt
,
T. J.
,
2014
, “Comparison of ALSI10MGand AL6061 Processed Through DMLS,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
404
419
.
3.
Uddin
,
S. Z.
,
Murr
,
L. E.
,
Terrazas
,
C. A.
,
Morton
,
P.
,
Roberson
,
D. A.
, and
Wicker
,
R. B.
,
2018
, “
Processing and Characterization of Crack-Free Aluminum 6061 Using High-Temperature Heating in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
405
415
.
4.
Roberts
,
C. E.
,
Bourell
,
D.
,
Watt
,
T.
, and
Cohen
,
J.
,
2016
, “
A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys
,”
Phys. Proc.
,
83
, pp.
909
917
.
5.
Cross
,
C. E.
,
2005
, “On the Origin of Weld Solidification Cracking,”
Hot Cracking Phenomena in Welds
,
B.
Thomas
and
H.
Herold
, eds.,
Springer-Verlag
,
Berlin/Heidelberg
, pp.
3
18
.
6.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Jordan
,
J. B.
,
Rodriguez
,
O. L.
,
Brewer
,
L. N.
,
McClelland
,
Z.
,
Whittington
,
W. R.
, et al
,
2017
, “
Microstructures and Mechanical Behavior of Inconel 625 Fabricated by Solid-State Additive Manufacturing
,”
Mater. Sci. Eng. A
,
694
, pp.
1
9
.
7.
Phillips
,
B. J.
,
Avery
,
D. Z.
,
Liu
,
T.
,
Rodriguez
,
O. L.
,
Mason
,
C. J. T.
,
Jordan
,
J. B.
,
Brewer
,
L. N.
, and
Allison
,
P. G.
,
2019
, “
Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al-Mg-Si
,”
Materialia
,
7
, p.
100387
.
8.
Yu
,
H. Z.
,
Jones
,
M. E.
,
Brady
,
G. W.
,
Joey Griffiths
,
R.
,
Garcia
,
D.
,
Rauch
,
H. A.
,
Cox
,
C. D.
, and
Hardwick
,
N.
,
2018
, “
Non-Beam-Based Metal Additive Manufacturing Enabled by Additive Friction Stir Deposition
,”
Scr. Mater.
,
153
, pp.
122
130
.
9.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Brewer
,
L. N.
,
Rodriguez
,
O. L.
,
Jordan
,
J. B.
,
Liu
,
T.
,
Whittington
,
W. R.
, et al
,
2018
, “
Influence of Texture and Grain Refinement on the Mechanical Behavior of AA2219 Fabricated by High Shear Solid State Material Deposition
,”
Mater. Sci. Eng. A
,
724
, pp.
547
558
.
10.
Avery
,
D. Z.
,
Rivera
,
O. G.
,
Mason
,
C. J. T.
,
Phillips
,
B. J.
,
Jordan
,
J. B.
,
Su
,
J.
,
Hardwick
,
N.
, and
Allison
,
P. G.
,
2018
, “
Fatigue Behavior of Solid-State Additive Manufactured Inconel 625
,”
JOM
,
70
(
11
), pp.
2475
2484
.
11.
McClelland
,
Z.
,
Avery
,
D. Z.
,
Williams
,
M. B.
,
Mason
,
C. J. T.
,
Rivera
,
O. G.
,
Leah
,
C.
,
Allison
,
P. G.
,
Jordon
,
J. B.
,
Martens
,
R. L.
, and
Hardwick
,
N.
,
2019
, “Microstructure and Mechanical Properties of High Shear Material Deposition of Rare Earth Magnesium Alloys WE43,”
Magnesium Technology 2019
,
V. V.
Joshi
,
J. B.
Jordon
,
D.
Orlov
, and
N. R.
Neelameggham
, eds.,
Springer
,
New York
, pp.
277
282
.
12.
Griffiths
,
R. J.
,
Perry
,
M. E J.
,
Sietins
,
J. M.
,
Zhu
,
Y.
,
Hardwick
,
N.
,
Cox
,
C. D.
,
Rauch
,
H. A.
, and
Yu
,
H. Z.
,
2019
, “
A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD
,”
J. Mater. Eng. Perform.
,
28
(
2
), pp.
648
656
.
13.
Mishra
,
R. S.
,
Sankar Haridas
,
R.
, and
Agrawal
,
P.
,
2022
, “
Friction Stir-Based Additive Manufacturing
,”
Sci. Technol. Weld. Join.
,
27
(
3
), pp.
141
165
.
14.
Williams
,
M. B.
,
Robinson
,
T. W.
,
Williamson
,
C. J.
,
Kinser
,
R. P.
,
Ashmore
,
N. A.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2021
, “
Elucidating the Effect of Additive Friction Stir Deposition on the Resulting Microstructure and Mechanical Properties of Magnesium Alloy We43
,”
Metals
,
11
(
11
), p.
1739
.
15.
Rutherford
,
B. A.
,
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Rao
,
H. M.
,
Doherty
,
K. J.
,
Allison
,
P. G.
,
Brewer
,
L. N.
, and
Brian Jordon
,
J.
,
2020
, “
Effect of Thermomechanical Processing on Fatigue Behavior in Solid-State Additive Manufacturing of Al-Mg-Si Alloy
,”
Metals
,
10
(
7
), p.
947
.
16.
Zhu
,
N.
,
Avery
,
D.
,
Rutherford
,
B. A.
,
Phillips
,
B. J.
,
Allison
,
P. G.
,
Brian Jordon
,
J.
, and
Brewer
,
L. N.
,
2021
, “
The Effect of Anodization on the Mechanical Properties of AA6061 Produced by Additive Friction Stir-Deposition
,”
Metals
,
11
(
11
), p.
1773
.
17.
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Taylor Mason
,
C. J.
,
Palermo
,
M.
,
Williams
,
M. B.
,
Cleek
,
C.
, and
Rodriguez
,
O. L.
,
2020
, “
Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy
,”
Metall. Mater. Trans. A
,
51
(
6
), pp.
2778
2795
.
18.
Rekha
,
M. Y.
,
Avery
,
D.
,
Allison
,
P. G.
,
Brian Jordon
,
J.
, and
Brewer
,
L.
,
2021
, “
Nanostructure Evolution in AA7075 Alloy Produced by Solid State Additive Manufacturing-Additive Friction Stir-Deposition
,”
Microsc. Microanal.
,
27
(
1
), pp.
3118
3119
.
19.
Avery
,
D. Z.
,
Cleek
,
C. E.
,
Phillips
,
B. J.
,
Rekha
,
M. Y.
,
Kinser
,
R. P.
,
Rao
,
H. M.
,
Brewer
,
L. N.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2022
, “
Evaluation of Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Repaired Via Additive Friction Stir Deposition
,”
ASME J. Eng. Mater. Technol.
,
144
(
3
), p.
031003
.
20.
Agrawal
,
P.
,
Haridas
,
R. S.
,
Yadav
,
S.
,
Thapliyal
,
S.
,
Gaddam
,
S.
,
Verma
,
R.
, and
Mishra
,
R. S.
,
2021
, “
Processing-Structure-Property Correlation in Additive Friction Stir Deposited Ti-6Al-4V Alloy From Recycled Metal Chips
,”
Addit. Manuf.
,
47
, p.
102259
.
21.
Griffiths
,
R. J.
,
Garcia
,
D.
,
Song
,
J.
,
Vasudevan
,
V. K.
,
Steiner
,
M. A.
,
Cai
,
W.
, and
Yu
,
H. Z.
,
2021
, “
Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages
,”
Materialia
,
15
, p.
100967
.
22.
Perry
,
M. E. J.
,
Rauch
,
H. A.
,
Joey Griffiths
,
R.
,
Garcia
,
D.
,
Sietins
,
J. M.
,
Zhu
,
Y.
, and
Yu
,
H. Z.
,
2021
, “
Tracing Plastic Deformation Path and Concurrent Grain Refinement During Additive Friction Stir Deposition
,”
Materialia
,
18
, p.
101159
.
23.
Perry
,
M. E. J.
,
Griffiths
,
R. J.
,
Garcia
,
D.
,
Sietins
,
J. M.
,
Zhu
,
Y.
, and
Yu
,
H. Z.
,
2020
, “
Morphological and Microstructural Investigation of the Non-Planar Interface Formed in Solid-State Metal Additive Manufacturing by Additive Friction Stir Deposition
,”
Addit. Manuf.
,
35
, p.
101293
.
24.
Khodabakhshi
,
F.
, and
Gerlich
,
A. P.
,
2018
, “
Potentials and Strategies of Solid-State Additive Friction-Stir Manufacturing Technology: A Critical Review
,”
J. Manuf. Process.
,
36
, pp.
77
92
.
25.
Stubblefield
,
G. G.
,
Fraser
,
K. A.
,
Van Iderstine
,
D.
,
Mujahid
,
S.
,
Rhee
,
H.
,
Jordon
,
J. B.
, and
Allison
,
P. G.
,
2022
, “
Elucidating the Influence of Temperature and Strain Rate on the Mechanics of AFS-D Through a Combined Experimental and Computational Approach
,”
J. Mater. Process. Technol.
,
305
, p.
117593
.
26.
Pirondi
,
A.
, and
Collini
,
L.
,
2009
, “
Analysis of Crack Propagation Resistance of Al–Al2O3 Particulate-Reinforced Composite Friction Stir Welded Butt Joints
,”
Int. J. Fatigue
,
31
(
1
), pp.
111
121
.
27.
Feng
,
A. H.
,
Chen
,
D. L.
, and
Ma
,
Z. Y.
,
2010
, “
Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded 6061 Aluminum Alloy
,”
Metall. Mater. Trans. A
,
41
(
10
), pp.
2626
2641
.
28.
Minak
,
G.
,
Ceschini
,
L.
,
Boromei
,
I.
, and
Ponte
,
M.
,
2010
, “
Fatigue Properties of Friction Stir Welded Particulate Reinforced Aluminium Matrix Composites
,”
Int. J. Fatigue
,
32
(
1
), pp.
218
226
.
29.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R: Rep.
,
50
(
1–2
), pp.
1
78
.
30.
Threadgill
,
P. L.
,
Leonard
,
A. J.
,
Shercliff
,
H. R.
, and
Withers
,
P. J.
,
2009
, “
Friction Stir Welding of Aluminium Alloys
,”
Int. Mater. Rev.
,
54
(
2
), pp.
49
93
.
31.
Su
,
J.-Q.
,
Nelson
,
T. W.
,
Mishra
,
R.
, and
Mahoney
,
M.
,
2003
, “
Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium
,”
Acta Mater.
,
51
(
3
), pp.
713
729
.
32.
Perovic
,
A.
,
Perovic
,
D. D.
,
Weatherly
,
G. C.
, and
Lloyd
,
D. J.
,
1999
, “
Precipitation in Aluminum Alloys AA6111 and AA6016
,”
Scr. Mater.
,
7
(
41
), pp.
703
708
.
33.
Beck
,
S. C.
,
Rutherford
,
B. A.
,
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Rao
,
H.
,
Rekha
,
M. Y.
,
Brewer
,
L. N.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2021
, “
The Effect of Solutionizing and Artificial Aging on the Microstructure and Mechanical Properties in Solid-State Additive Manufacturing of Precipitation Hardened Al–Mg–Si Alloy
,”
Mater. Sci. Eng. A
,
819
, p.
141351
.
34.
ASM International
.
Handbook Committee
.
ASM Handbook
,
ASM International
,
Novelty, OH
, https://www.asminternational.org/handbooks/-/journal_content/56/10192/05344G/PUBLICATION, Accessed July 28, 2019.
35.
ASTM E2627—13 Standard Practice for Determining Average Grain Size Using Electron Backscatter Diffraction (EBSD) in Fully Recrystallized Polycrystalline Materials
,”
ASM International
,
West Conshohocken, PA
, https://compass.astm.org/Standards/HISTORICAL/E2627-13.htm, Accessed June 26, 2020.
36.
Cisko
,
A. R.
,
Jordon
,
J. B.
,
Amaro
,
R. L.
,
Allison
,
P. G.
,
Wlodarski
,
J. S.
,
McClelland
,
Z. B.
,
Garcia
,
L.
, and
Rushing
,
T. W.
,
2020
, “
A Parametric Investigation on Friction Stir Welding of Al-Li 2099
,”
Mater. Manuf. Process.
,
35
(
10
), pp.
1069
1076
.
37.
Torries
,
B.
,
Imandoust
,
A.
,
Beretta
,
S.
,
Shao
,
S.
, and
Shamsaei
,
N.
,
2018
, “
Overview on Microstructure- and Defect-Sensitive Fatigue Modeling of Additively Manufactured Materials
,”
JOM
,
70
(
9
), pp.
1853
1862
.
38.
McDowell
,
D. L.
,
Gall
,
K.
,
Horstemeyer
,
M. F.
, and
Fan
,
J.
,
2003
, “
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Eng. Fract. Mech.
,
70
(
1
), pp.
49
80
.
39.
Xue
,
Y.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
,
Dale
,
M. H.
, and
Jordon
,
J. B.
,
2007
, “
Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075-T651
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2810
2823
.
40.
Xue
,
Y.
,
Wright
,
A. M.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
,
Solanki
,
K.
, and
Hammi
,
Y.
,
2010
, “
Micromechanics Study of Fatigue Damage Incubation Following an Initial Overstrain
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p. 021010.
41.
Jordon
,
J.
,
Horstemeyer
,
J. B.
,
Daniewicz
,
M. F.
,
Badarinarayan
,
S. R.
, and
and Grantham
,
H.
,
2010
, “
Fatigue Characterization and Modeling of Friction Stir Spot Welds in Magnesium AZ31 Alloy
,”
ASME J. Eng. Mater. Technol.
,
132
(
4
), p.
041008
.
42.
El Kadiri
,
H.
,
Xue
,
Y.
,
Horstemeyer
,
M. F.
,
Jordon
,
J. B.
, and
Wang
,
P. T.
,
2006
, “
Identification and Modeling of Fatigue Crack Growth Mechanisms in a Die-Cast AM50 Magnesium Alloy
,”
Acta Mater.
,
54
(
19
), pp.
5061
5076
.
43.
Torries
,
B.
, and
Shamsaei
,
N.
,
2017
, “
Fatigue Behavior and Modeling of Additively Manufactured Ti-6Al-4V Including Interlayer Time Interval Effects
,”
JOM
,
69
(
12
), pp.
2698
2705
.
44.
McCullough
,
R. R.
,
Jordon
,
J. B.
,
Allison
,
P. G.
,
Rushing
,
T.
, and
Garcia
,
L.
,
2019
, “
Fatigue Crack Nucleation and Small Crack Growth in an Extruded 6061 Aluminum Alloy
,”
Int. J. Fatigue
,
119
, pp.
52
61
.
45.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
46.
Charit
,
I.
, and
Mishra
,
R. S.
,
2008
, “
Abnormal Grain Growth in Friction Stir Processed Alloys
,”
Scr. Mater.
,
58
(
5
), pp.
367
371
.
47.
Jana
,
S.
,
Mishra
,
R. S.
,
Baumann
,
J. A.
, and
Grant
,
G. J.
,
2010
, “
Effect of Friction Stir Processing on Microstructure and Tensile Properties of an Investment Cast Al-7Si-0.6Mg Alloy
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
41
(
10
), pp.
2507
2521
.
48.
Elangovan
,
K.
, and
Balasubramanian
,
V.
,
2008
, “
Influences of Post-Weld Heat Treatment on Tensile Properties of Friction Stir-Welded AA6061 Aluminum Alloy Joints
,”
Mater. Charact.
,
59
(
9
), pp.
1168
1177
.
49.
Ipekoglu
,
G.
,
Erim
,
S.
, and
Cam
,
G.
,
2014
, “
Investigation Into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates With Different Temper Conditions
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
45
(
2
), pp.
864
877
.
50.
Malopheyev
,
S.
,
Vysotskiy
,
I.
,
Kulitskiy
,
V.
,
Mironov
,
S.
, and
Kaibyshev
,
R.
,
2016
, “
Optimization of Processing-Microstructure-Properties Relationship in Friction-Stir Welded 6061-T6 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
662
, pp.
136
143
.
51.
Moradi
,
M. M.
,
Jamshidi Aval
,
H.
, and
Jamaati
,
R.
,
2017
, “
Effect of Pre and Post Welding Heat Treatment in SiC-Fortified Dissimilar AA6061-AA2024 FSW Butt Joint
,”
J. Manuf. Process.
,
30
, pp.
97
105
.
52.
Vysotskiy
,
I.
,
Malopheyev
,
S.
,
Mironov
,
S.
, and
Kaibyshev
,
R.
,
2019
, “
Effect of Pre-Strain Path on Suppression of Abnormal Grain Growth in Friction-Stir Welded 6061 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
760
, pp.
206
213
.
53.
Humphreys
,
F. J.
,
1997
, “
A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures—I. The Basic Model
,”
Acta Mater.
,
45
(
10
), pp.
4231
4240
.
You do not currently have access to this content.