Abstract

The 316L stainless steel part built by laser powder bed fusion has attracted much attention in recent years. However, current studies have not systematically revealed the influence of post-heat treatment on fatigue performance. In this study, we utilized two common heat treatment processes (450 °C anneal treatment and 1050 °C solution treatment) for 316L stainless steel and then discussed their influence on fatigue life and crack growth rate. It can be found that both the heat treatment processes led to a decrease in fatigue life. The 1050 °C solution treatment can decrease crack growth rate. This can be attributed to the increase in grain size and decline of carbide at the grain boundary. The former can lead to a longer propagation path. The latter may cause more and deeper secondary cracks along the propagation path, which exhaust more energy.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ronneberg
,
T.
,
Davies
,
C. M.
, and
Hooper
,
P. A.
,
2020
, “
Revealing Relationships Between Porosity, Microstructure and Mechanical Properties of Laser Powder Bed Fusion 316L Stainless Steel Through Heat Treatment
,”
Mater. Des.
,
189
(
10
), pp.
14
26
.
2.
Wang
,
Y. M.
,
Voisin
,
T.
,
McKeown
,
J. T.
,
Ye
,
J.
,
Calta
,
N. P.
,
Li
,
Z.
,
Zeng
,
Z.
, et al
,
2018
, “
Additively Manufactured Hierarchical Stainless Steels With High Strength and Ductility
,”
Nat. Mater.
,
17
(
1
), p.
63
.
3.
Liu
,
L.
,
Ding
,
Q.
,
Zhong
,
Y.
,
Zou
,
J.
,
Wu
,
J.
,
Chiu
,
Y.-L.
,
Li
,
J.
,
Zhang
,
Z.
,
Yu
,
Q.
, and
Shen
,
Z.
,
2018
, “
Dislocation Network in Additive Manufactured Steel Breaks Strength-Ductility Trade-Off
,”
Mater. Today
,
21
(
2
), pp.
354
361
.
4.
Cecchel
,
S.
,
Razavi
,
N.
,
Mega
,
F.
,
Cornacchia
,
G.
,
Avanzini
,
A.
,
Battini
,
D.
, and
Berto
,
F.
,
2022
, “
Fatigue Testing and End of Life Investigation of a Topology Optimized Connecting Rod Fabricated via Selective Laser Melting
,”
Int. J. Fatigue
,
164
(
10
), pp.
185
195
.
5.
Romano
,
S.
,
Brandao
,
A.
,
Gumpinger
,
J.
,
Gschweitl
,
M.
, and
Beretta
,
S.
,
2017
, “
Qualification of AM Parts: Extreme Value Statistics Applied to Tomographic Measurements
,”
Mater. Des.
,
131
(
05
), pp.
32
48
.
6.
Afkhami
,
S.
,
Dabiri
,
M.
,
Alavi
,
S. H.
,
Bjork
,
T.
, and
Salminen
,
A.
,
2019
, “
Fatigue Characteristics of Steels Manufactured by Selective Laser Melting
,”
Int. J. Fatigue
,
122
(
3
), pp.
72
83
.
7.
Wang
,
Z.
,
Yang
,
S.
,
Huang
,
Y.
,
Fan
,
C.
,
Peng
,
Z.
, and
Gao
,
Z.
,
2021
, “
Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM)
,”
Materials
,
14
(
24
), pp.
75
83
.
8.
Damiens
,
A.
,
Bonnefoy
,
H.
, and
Titeux
,
I.
,
2020
, “
Influence of Processing Parameters on Mechanical and Fatigue Properties of 316 L Steel Manufactured by Selective Laser Melting
,”
Weld. World
,
64
(
14
), pp.
1321
1328
.
9.
Maleki
,
E.
,
Bagherifard
,
S.
,
Bandini
,
M.
, and
Guagliano
,
M.
,
2021
, “
Surface Post-Treatments for Metal Additive Manufacturing: Progress, Challenges, and Opportunities
,”
Addit. Manuf.
,
37
(
10
), pp.
16
28
.
10.
Zhang
,
H.
,
Xu
,
M.
,
Liu
,
Z.
,
Li
,
C.
,
Kumar
,
P.
,
Liu
,
Z.
, and
Zhang
,
Y.
,
2021
, “
Microstructure, Surface Quality, Residual Stress, Fatigue Behavior and Damage Mechanisms of Selective Laser Melted 304L Stainless Steel Considering Building Direction
,”
Addit. Manuf.
,
46
(
10
), pp.
156
169
.
11.
Riemer
,
A.
,
Leuders
,
S.
,
Thoene
,
M.
,
Richard
,
H. A.
,
Troester
,
T.
, and
Niendorf
,
T.
,
2014
, “
On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting
,”
Eng. Fract. Mech.
,
120
(
23
), pp.
15
25
.
12.
Fergani
,
O.
,
Wold
,
A. B.
,
Berto
,
F.
,
Brotan
,
V.
, and
Bambach
,
M.
,
2018
, “
Study of the Effect of Heat Treatment on Fatigue Crack Growth Behaviour of 316L Stainless Steel Produced by Selective Laser Melting
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
114
), pp.
1102
1119
.
13.
Kong
,
D.
,
Dong
,
C.
,
Ni
,
X.
,
Zhang
,
L.
,
Yao
,
J.
,
Man
,
C.
,
Cheng
,
X.
,
Xiao
,
K.
, and
Li
,
X.
,
2019
, “
Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes
,”
J. Mater. Sci. Technol.
,
35
(
7
), pp.
1499
1507
.
14.
Cui
,
L.
,
Jiang
,
F.
,
Peng
,
R. L.
,
Mousavian
,
R. T.
,
Yang
,
Z.
, and
Moverare
,
J.
,
2022
, “
Dependence of Microstructures on Fatigue Performance of Polycrystals: A Comparative Study of Conventional and Additively Manufactured 316L Stainless Steel
,”
Int. J. Plast.
,
149
(
10
), pp.
132
146
.
15.
Shrestha
,
R.
,
Simsiriwong
,
J.
, and
Shamsaei
,
N.
,
2021
, “
Fatigue Behavior of Additive Manufactured 316L Stainless Steel Under Axial Versus Rotating-Bending Loading: Synergistic Effects of Stress Gradient, Surface Roughness, and Volumetric Defects
,”
Int. J. Fatigue
,
144
(
10
), pp.
134
148
.
16.
Chen
,
Y.
,
Wang
,
X.
,
Shen
,
J.
,
Peng
,
Y.
,
Jiang
,
Y.
,
Yang
,
X.
,
Leen
,
S. B.
, and
Gong
,
J.
,
2022
, “
Deformation Mechanisms of Selective Laser Melted 316L Austenitic Stainless Steel in High Temperature low Cycle Fatigue
,”
Mater. Sci. Eng. A
,
843
(
23
), pp.
304
316
.
17.
Andreau
,
O.
,
Pessard
,
E.
,
Koutiri
,
I.
,
Penot
,
J.-D.
,
Dupuy
,
C.
,
Saintier
,
N.
, and
Peyre
,
P.
,
2019
, “
A Competition Between the Contour and Hatching Zones on the High Cycle Fatigue Behaviour of a 316L Stainless Steel: Analyzed Using X-ray Computed Tomography
,”
Mater. Sci. Eng. A
,
757
(
29
), pp.
146
159
.
18.
Kim
,
Y.-K.
,
Baek
,
M.-S.
,
Yang
,
S.
, and
Lee
,
K.-A.
,
2021
, “
In-Situ Formed Oxide Enables Extraordinary High-Cycle Fatigue Resistance in Additively Manufactured CoCrFeMnNi High-Entropy Alloy
,”
Addit. Manuf.
,
38
(
11
), pp.
145
159
.
19.
Chen
,
H.
,
Li
,
W.
,
Huang
,
Y.
,
Xie
,
Z.
,
Zhu
,
X.
,
Liu
,
B.
, and
Wang
,
B.
,
2022
, “
Molten Pool Effect on Mechanical Properties in a Selective Laser Melting 316L Stainless Steel at High-Velocity Deformation
,”
Mater. Charact.
,
194
(
11
), pp.
124
138
.
20.
AlMangour
,
B.
,
Grzesiak
,
D.
,
Cheng
,
J.
, and
Ertas
,
Y.
,
2018
, “
Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods
,”
J. Mater. Process. Technol.
,
257
(
23
), pp.
288
301
.
21.
Siao
,
Y.-H.
, and
Wen
,
C.-D.
,
2021
, “
Examination of Molten Pool With Marangoni Flow and Evaporation Effect by Simulation and Experiment in Selective Laser Melting
,”
Int. Commun. Heat Mass Transfer
,
125
(
10
), pp.
98
112
.
22.
Güden
,
M.
,
Yavas
,
H.
,
Tanrikulu
,
A. A.
,
Tasdemirci
,
A.
,
Akin
,
B.
,
Enser
,
S.
,
Karakus
,
A.
, and
Hamat
,
B. A.
,
2021
, “
Orientation Dependent Tensile Properties of a Selective-Laser-Melt 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
824
(
8
), pp.
96
106
.
23.
Gray
,
G. T.
, III
,
Livescu
,
V.
,
Rigg
,
P. A.
,
Trujillo
,
C. P.
,
Cady
,
C. M.
,
Chen
,
S. R.
,
Carpenter
,
J. S.
,
Lienert
,
T. J.
, and
Fensin
,
S. J.
,
2017
, “
Structure/Property (Constitutive and Spallation Response) of Additively Manufactured 316L Stainless Steel
,”
Acta Mater.
,
138
(
13
), pp.
140
149
.
24.
Dryepondt
,
S.
,
Nandwana
,
P.
,
Fernandez-Zelaia
,
P.
, and
List
,
F.
, III
,
2021
, “
Microstructure and High Temperature Tensile Properties of 316L Fabricated by Laser Powder-Bed Fusion
,”
Addit. Manuf.
,
37
(
14
), pp.
178
190
.
25.
Elangeswaran
,
C.
,
Cutolo
,
A.
,
Muralidharan
,
G. K.
,
de Formanoir
,
C.
,
Berto
,
F.
,
Vanmeensel
,
K.
, and
Van Hooreweder
,
B.
,
2019
, “
Effect of Post-Treatments on the Fatigue Behaviour of 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
123
(
3
), pp.
31
39
.
26.
Hamada
,
A.
,
Jaskari
,
M.
,
Gundgire
,
T.
, and
Jarvenpaa
,
A.
,
2023
, “
Enhancement and Underlying Fatigue Mechanisms of Laser Powder Bed Fusion Additive-Manufactured 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
873
(
17
), pp.
202
221
.
27.
Guden
,
M.
,
Enser
,
S.
,
Bayhan
,
M.
,
Tasdemirci
,
A.
, and
Yavas
,
H.
,
2022
, “
The Strain Rate Sensitive Flow Stresses and Constitutive Equations of a Selective-Laser-Melt and an Annealed-Rolled 316L Stainless Steel: A Comparative Study
,”
Mater. Sci. Eng. A
,
838
(
24
), pp.
267
285
.
28.
Fergani
,
O.
,
Bratli Wold
,
A.
,
Berto
,
F.
,
Brotan
,
V.
, and
Bambach
,
M.
,
2017
, “
Study of the Effect of Heat Treatment on Fatigue Crack Growth Behaviour of 316L Stainless Steel Produced by Selective Laser Melting
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
04
), pp.
62
77
.
29.
Zeng
,
F.
,
Yang
,
Y.
, and
Qian
,
G.
,
2022
, “
Fatigue Properties and S-N Curve Estimating of 316L Stainless Steel Prepared by SLM
,”
Int. J. Fatigue
,
162
(
10
), pp.
102
112
.
30.
Kluczynski
,
J.
,
Sniezek
,
L.
,
Grzelak
,
K.
,
Torzewski
,
J.
,
Szachogluchowicz
,
I.
,
Wachowski
,
M.
, and
Luszczek
,
J.
,
2020
, “
Crack Growth Behavior of Additively Manufactured 316L Steel-Influence of Build Orientation and Heat Treatment
,”
Materials
,
13
(
22
), pp.
265
277
.
31.
Kong
,
D.
,
Dong
,
C.
,
Wei
,
S.
,
Ni
,
X.
,
Zhang
,
L.
,
Li
,
R.
,
Wang
,
L.
,
Man
,
C.
, and
Li
,
X.
,
2021
, “
About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels
,”
Addit. Manuf.
,
38
(
21
), pp.
256
267
.
32.
Sun
,
W.
,
Ma
,
Y. E.
,
Li
,
P.
, and
Wang
,
Z.
,
2022
, “
Residual Stress and Long Fatigue Crack Growth Behaviour of Laser Powder bed Fused Ti6Al4V: Role of Build Direction
,”
Int. J. Fatigue
,
160
(
4
), pp.
56
69
.
33.
Xie
,
D.
,
Lv
,
F.
,
Yang
,
Y.
,
Shen
,
L.
,
Tian
,
Z.
,
Shuai
,
C.
,
Chen
,
B.
, and
Zhao
,
J.
,
2022
, “
A Review on Distortion and Residual Stress in Additive Manufacturing
,”
Chin. J. Mech. Eng.: Addit. Manuf. Front.
,
1
(
3
), pp.
45
58
.
34.
Shang
,
D. J. W. D. G.
,
1996
, “
Definition and Determination Method of Fatigue Crack Initiation Size
,”
Mech. Strength
,
18
(
1
), pp.
4
12
.
35.
Kitagawa
,
H.
,
1976
, “
Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage
,”
Proceedings of 2nd ICM
,
Cleveland, OH
,
Aug. 16–20
, pp.
627
631
.
36.
Chao
,
Q.
,
Thomas
,
S.
,
Birbilis
,
N.
,
Cizek
,
P.
,
Hodgson
,
P. D.
, and
Fabijanic
,
D.
,
2021
, “
The Effect of Post-Processing Heat Treatment on the Microstructure, Residual Stress and Mechanical Properties of Selective Laser Melted 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
821
(
14
), pp.
174
188
.
37.
Cui
,
L.
,
Jiang
,
S.
,
Xu
,
J.
,
Peng
,
R. L.
,
Mousavian
,
R. T.
, and
Moverare
,
J.
,
2021
, “
Revealing Relationships Between Microstructure and Hardening Nature of Additively Manufactured 316L Stainless Steel
,”
Mater. Des.
,
198
(
15
), pp.
178
186
.
38.
Chen
,
N.
,
Ma
,
G.
,
Zhu
,
W.
,
Godfrey
,
A.
,
Shen
,
Z.
,
Wu
,
G.
, and
Huang
,
X.
,
2019
, “
Enhancement of an Additive-Manufactured Austenitic Stainless Steel by Post-Manufacture Heat-Treatment
,”
Mater. Sci. Eng. A
,
759
(
4
), pp.
65
69
.
You do not currently have access to this content.