Composite materials offer designers the advantage of tailoring structures and materials to meet a variety of property and performance requirements in changing and demanding environments. However, the wide variety of material combinations, reinforcement geometries and architectures to choose from poses a bewildering problem of selection. Thus an appropriate, and furthermore optimal, tailoring of composite materials for applications is a challenging design problem and forms the focus of the article. Specifically, the present work addresses the problem of selecting optimal combinations of matrix and reinforcement materials, and reinforcement morphology, architecture, and volume fraction so as to meet the specified property and performance requirements. The optimal tailoring problem is solved using the combinatorial optimization technique of simulated annealing which works in conjunction with a property model base consisting of analytical relationships between the composite properties and the microstructure. The matrix materials considered in the study span the material classes of polymers, metals and ceramics while reinforcement geometries of unidirectional fibers, particulates and two-dimensional woven fabrics are considered. The overall approach and key results of the study are presented and discussed.

1.
Allen, R. H., and Bose A., 1987, “ACOLADE: A Hybrid Knowledge-based System for Preliminary Composite Laminate Design,” Proceedings of the 1987 ASME International Computers in Engineering Conference, R. Raghavan and T. J. Cokonis, eds., pp. 51–57, ASME, New York.
2.
Ashby, M. F., 1995, Materials Selection in Mechanical Design, Butterworth-Heinemann, Oxford, UK.
3.
Behrens
E.
,
1968
, “
Thermal Conductivities of Composite Materials
,”
Journal of Composite Materials
, Vol.
2
, No.
1
, pp.
2
17
.
4.
Bergamaschi, S., Bombarda, G., Piancastelli, L., and Sartori, C., 1989, “Expert System for the Selection of a Composite Material,” Second Int. Conf. Data Knowl. Sys. Manuf. Eng., IEEE Service Center, Cat. No. 89CH2806-8, pp. 140–141.
5.
Chen, J. L., Hwang, W. C., Wang, S. S., and Tsai, P., 1990, “Development of an Intelligent Database System for Composite Material Selection in Structural Design,” National SAMPE Symposium and Exhibition Proceedings, Vol. 35, No. 1, pp. 616–626.
6.
Chen
J. L.
,
Sun
S. H.
, and
Hwang
W. C.
,
1989
, “
An Intelligent Database for Composite Material Selection in Structural Design
,”
Expert Systems With Applications
, Vol.
6
, pp.
159
168
.
7.
Christensen, R. M., 1979, Mechanics of Composites, John Wiley, New York.
8.
Han
L. S.
, and
Cosner
A. A.
,
1981
, “
Effective Thermal Conductivities of Fibrous Composites
,”
ASME Journal of Heat Transfer
, Vol.
103
, pp.
387
392
.
9.
Hashin
Z.
,
1983
, “
Analysis of Composite Materials: A Survey
,”
ASME Journal of Applied Mechanics
, Vol.
50
, pp.
481
505
.
10.
Ishikawa
T.
,
1981
, “
Anti-Symmetric Elastic Properties of Composite Plates of Satin Weave Cloth
,”
Fibre Science and Technology
, Vol.
15
, pp.
127
145
.
11.
Ishikawa
T.
, and
Chou
T-W.
,
1982
, “
Elastic Behaviour of Woven Hybrid Composites
,”
Journal of Composite Materials
, Vol.
16
, pp.
2
19
.
12.
Ishikawa
T.
, and
Chou
T-W.
,
1983
, “
In-Plane Thermal Expansion and Thermal Bending Coefficients of Fabric Composites
,”
Journal of Composite Materials
, Vol.
17
, pp.
92
104
.
13.
Jones, R. M., 1975, Mechanics of Composites, Hemisphere, New York.
14.
Karandikar
H. M.
, and
Mistree
F.
,
1992
, “
Tailoring Composite Materials through Optimal Selection of their Constituents
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
114
, pp.
451
458
.
15.
Karbhari
V. M.
, and
Wilkins
D. J.
,
1992
, “
The Use of Decision Support Systems for the Efficient Selection and Design of Composites and their Products
,”
International Journal of Materials and Product Technology
, Vol.
7
, No.
2
, pp.
125
149
.
16.
Kim
I. C.
, and
Torquato
S.
,
1990
, “
Determination of Effective Thermal Conductivity of Heterogeneous Media by Brownian Simulation
,”
Journal of Applied Physics
, Vol.
68
, No.
8
, pp.
3892
3903
.
17.
Kirkpatrick
S.
,
Gelatt
C. D.
, and
Vecchi
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
, Vol.
220
, pp.
671
680
.
18.
Lubin, G., ed., 1982, Handbook of Composites, Van Nostrand Reinhold, New York.
19.
Milton
G. W.
,
1982
, “
Bounds on the Elastic and Transport Properties of Two-Component Composites
,”
Journal of Mechanics and Physics of Solids
, Vol.
30
, pp.
177
191
.
20.
Muralidhar
K.
,
1990
, “
Equivalent Conductivity of Heterogeneous Medium
,”
International Journal of Heat and Mass Transfer
, Vol.
33
, No.
8
, pp.
1759
1765
.
21.
Nitsche, A., Kern, H., and Janczak, J., 1990, “Composites’ Design Based on Expert Knowledge,” Proceedings, American Society for Composites, Fifth Technical Conference, pp. 382–390.
22.
Pitchumani
R.
, and
Yao
S. C.
,
1991
, “
Correlation of Thermal Conductivities of Unidirectional Fibrous Composites Using Local Fractal Techniques
,”
ASME Journal of Heat Transfer
, Vol.
113
, No.
4
, pp.
788
796
.
23.
Pitchumani
R.
, et al.,
1994
, “
An Expert System Approach to Manufacturing Preforms for Infiltration Processing of Ceramic and Metal Matrix Composites
,”
Processing of Advanced Materials
, Vol.
4
, No.
3
, pp.
155
165
.
24.
Pitchumani
R.
,
Liaw
P. K.
,
Hsu
D. K.
,
Yao
S. C.
, and
Jeong
H.
,
1995
, “
Theoretical Models for the Anisotropic Conductivities of Two-phase and Three-phase Metal-Matrix Composites
,”
Acta Metallurgica et Materialia
, Vol.
43
, No.
8
, pp.
3045
3059
.
25.
Reinhart, T. J., et al., 1987, ASM Engineered Materials Handbook, ASM International press, Vol. 1.
26.
Sadagopan, D., and Pitchumani, R., 1996, “Property-based Optimal Tailoring of Composite Materials,” Physical Properties of Composites, P. K. Liaw and R. Pitchumani, eds., TMS Press, pp. 1–10.
27.
Sadagopan, D., and Pitchumani, R., 1997a, “Property-based Optimal Design of Composite Materials and Their Internal Architectures,” Journal of Composite Materials, in press.
28.
Sadagopan, D., and Pitchumani, R., 1997b, “Application of Genetic Algorithms to Optimal Tailoring of Composite Materials,” Composites Science and Technology, in press.
29.
Schwartz, M. M., 1984, Composite Materials Handbook, McGraw Hill, New York.
30.
Smith
P. A.
, and
Torquato
S.
,
1989
, “
Computer Simulation Results for Bounds on Effective Conductivity of Composite Shells
,”
Journal of Applied Physics
, Vol.
65
, No.
3
, pp.
893
900
.
31.
Springer
G. S.
, and
Tsai
S. W.
,
1967
, “
Thermal Conductivities of Unidirectional Materials
,”
Journal of Composite Materials
, Vol.
1
, pp.
166
173
.
32.
Sticklen
J.
,
Kamel
A.
,
Hawley
M.
, and
Delong
J.
,
1992
, “
An Artificial Intelligence-based Design Tool for Thin Film Composite Materials
,”
Applied Artificial Intelligence
, Vol.
6
, pp.
382
390
.
33.
Takao
Y.
,
Chou
T-W.
, and
Aarts
M.
,
1982
, “
Effective Longitudinal Young’s Modulus of Misoriented Short Fiber Composites
,”
ASME Journal of Applied Mechanics
, Vol.
49
, pp.
536
540
.
34.
Taya, M., and Arsenault, R. J., 1992, Metal Matrix Composites: Thermo Mechanical Behaviour, Pergamon Press.
35.
Torquato
S.
, and
Lado
F.
,
1988
, “
Bounds on the Conductivity of a Random Array of Cylinders
,”
Proc., Royal Society of London, Series A
, Vol.
417
, pp.
59
80
.
36.
van Laarhoven, P. J. M., and Aarts, E. H. L., 1987, Simulated Annealing: Theory and Applications., D. Reidel Publishing Co., Holland.
37.
Waterman, N. A., and Ashby, M. F., eds., 1987, Elsevier Materials Selector, 1991, CRC Press, Elsevier Science Publishers, Vol. 1-3.
38.
William, H. P., and Flannery, P. B., 1987, Numerical Recipes in FORTRAN, Cambridge University Press, Cambridge.
This content is only available via PDF.
You do not currently have access to this content.