This paper addresses the difficulty of the previously developed Adaptive Response Surface Method (ARSM) for high-dimensional design problems. ARSM was developed to search for the global design optimum for computation-intensive design problems. This method utilizes Central Composite Design (CCD), which results in an exponentially increasing number of required design experiments. In addition, ARSM generates a complete new set of CCD points in a gradually reduced design space. These two factors greatly undermine the efficiency of ARSM. In this work, Latin Hypercube Design (LHD) is utilized to generate saturated design experiments. Because of the use of LHD, historical design experiments can be inherited in later iterations. As a result, ARSM only requires a limited number of design experiments even for high-dimensional design problems. The improved ARSM is tested using a group of standard test problems and then applied to an engineering design problem. In both testing and design application, significant improvement in the efficiency of ARSM is realized. The improved ARSM demonstrates strong potential to be a practical global optimization tool for computation-intensive design problems. Inheriting LHD points, as a general sampling strategy, can be integrated into other approximation-based design optimization methodologies.

1.
Haftka
,
R.
,
Scott
,
E. P.
, and
Cruz
,
J. R.
,
1998
, “
Optimization and Experiments: A Survey
,”
Appl. Mech. Rev.
,
51
(
7
), pp.
435
448
.
2.
Myers, R. H., and Montgomery, D. C., 1995, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., Toronto.
3.
Chen, W., 1995, “A Robust Concept Exploration Method for Configuring Complex System,” Ph.D. Thesis, Georgia Institute of Technology.
4.
Mitchell
,
T. J.
,
1974
, “
An Algorithm for the Construction of “D-Optimal” Experimental Designs
,”
Technometrics
,
16
(
2
), pp.
203
210
.
5.
Bernado
,
M. C.
,
Buck
,
R.
, and
Liu
,
L.
,
1992
, “
Integrated Circuit Design Optimization Using a Sequential Strategy
,”
IEEE Trans. Comput.-Aided Des.
,
11
(
3
), pp.
361
372
.
6.
Sell
,
J. W.
, and
Lepeniotis
,
S. S.
,
1992
, “
Thermoplastic Polymer Formulations: An Approach through Experimental Design
,”
Adv. Polym. Technol.
,
11
(
3
), pp.
193
202
.
7.
Giunta
,
A. A.
,
Balabanov
,
V.
,
Haim
,
D.
,
Grossman
,
B.
,
Mason
,
W. H.
,
Watson
,
L. T.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Optimization of a Supersonic Transport Using Design of Experiments theory and Response Surface Modeling
,”
Aeronaut. J.
,
101
(
1008
), pp.
347
356
.
8.
Unal, R., Lepsch, R. A., Engelund, W., and Stanley, D. O., 1996, “Approximation Model Building and Multidisciplinary Optimization Using Response Surface Methods,” AIAA-96-4044-CP, pp. 592–598.
9.
Unal, R., Lepsch, R. A., and McMillin, M. L., 1998, “Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs,” AIAA-98-4759, pp. 405–411.
10.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989a
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.
11.
Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F., 1998, “Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization,” Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, St. Louis, MO, September 2–4, AIAA, 1 (381–391) AIAA-98-4755.
12.
Taguchi, G., Yokoyama, Y., and Wu, Y., 1993, Taguchi Methods: Design of Experiments, American Supplier Institute, Allen Park, Michigan.
13.
Owen
,
A.
,
1992
, “
Orthogonal Arrays for Computer Experiments, Integration, and Visualization
,”
Statistica Sinica
,
2
, pp.
439
452
.
14.
McKay
,
M. D.
,
Bechman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
,”
Technometrics
,
21
(
2
), May, pp.
239
245
.
15.
Iman
,
R. L.
, and
Conover
,
W. J.
,
1980
, “
Small Sensitivity Analysis Techniques for Computer Models with an Application to Risk Assessment
,”
Commun. Stat: Theory Meth.
,
A9
(
17
), pp.
1749
1842
.
16.
Tang
,
B.
,
1993
, “
Orthogonal Array-based Latin Hypercubes
,”
J. Am. Stat. Assoc.
,
88
(
424
), Theory and Methods, pp.
1392
1397
.
17.
Park
,
J. S.
,
1994
, “
Optimal Latin-hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Infer.
,
39
, pp.
95
111
.
18.
Ye
,
K. Q.
,
Li
,
William
, and
Sudianto
,
A.
,
2000
, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
,
90
, pp.
145
159
.
19.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
,
1989
, “
Designs for Computer Experiments
,”
Technometrics
,
31
(
1
), pp.
41
47
.
20.
Varaarajan
,
S.
,
Chen
,
W.
, and
Pelka
,
C. J.
,
2000
, “
Robust concept Exploration of Propulsion Systems with Enhanced Model Approximation Capabilities
,”
Eng. Optimiz.
,
32
(
3
), pp.
309
334
.
21.
Giunta, A. A., and Watson, L. T., 1998, “A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models,” AIAA-98-4758, American Institute of Aeronautics and Astronautics, Inc., pp. 392–401.
22.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1999
, “
Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size
,”
J. Aircr.
,
36
(
1
), pp.
275
286
.
23.
Jin, R., Chen, W., and Simpson, T., 2000, “Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria,” 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, September 6–8.
24.
Lin, Y., Krishnapur, K., Allen, J. K., and Mistree, F., 2000, “Robust Concept Exploration in Engineering Design: Metamodeling Techniques and Goal Formulations,” Proceedings of the 2000 ASME Design Engineering Technical Conferences, DETC2000/DAC-14283, September 10–14, Baltimore, Maryland.
25.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
, pp.
129
150
.
26.
Dennis, J. E., and Torczon, V., 1996, “Managing Approximation Models in Optimization,” Alexandrov, N. and Hussaini, M. Y., eds., Multidisciplinary Design Optimization: State of the Art, Society for Industrial and Applied Mathematics, Philadelphia.
27.
Box, G. E. P., and Draper, N. R., 1969, Evolutionary Operation: A Statistical Method for Process Management, John Wiley & Sons, Inc., New York.
28.
Giunta, A. A., Balbanov, V., Kaufmann, M., Burgee, S., Grossman, B., Haftka, R. T., Mason, W. H., and Watson, L. T., 1996, “Variable Complexity Response Surface Design of an HSCT Configuration,” Multidisciplinary Design Optimization: State of the Art, Alexandrov, N., and Hussaini, M. Y., eds., Society for Industrial and Applied Mathematics, Philadelphia.
29.
Wujek
,
B. A.
, and
Renaud
,
J. E.
,
1998a
, “
New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 1
,”
AIAA J.
,
36
(
10
), pp.
1911
1921
.
30.
Wujek
,
B. A.
, and
Renaud
,
J. E.
,
1998b
, “
New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 2
,”
AIAA J.
,
36
(
10
), pp.
1922
1934
.
31.
Renaud
,
J. E.
, and
Gabriele
,
G. A.
,
1993
, “
Improved Coordination in Non-hierarchical System Optimization
,”
AIAA J.
,
31
, pp.
2367
2373
.
32.
Renaud
,
J. E.
, and
Gabriele
,
G. A.
,
1994
, “
Approximation in Non-hierarchical System Optimization
,”
AIAA J.
,
32
, pp.
198
205
.
33.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
, pp.
478
485
.
34.
Korngold
,
J. C.
, and
Gabriele
,
G. A.
,
1997
, “
Multidisciplinary Analysis and Optimization of Discrete Problems Using Response Surface Methods
,”
ASME J. Mech. Des.
,
9
, pp.
427
433
.
35.
Wang
,
G. G.
,
Dong
,
Z.
, and
Aitchison
,
P.
,
2001
, “
Adaptive Response Surface Method—A Global Optimization Scheme for Computation-intensive Design Problems
,”
Journal of Engineering Optimization
,
33
(
6
), pp.
707
734
.
36.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
, pp.
671
680
.
37.
Dixon, L., and Szego¨, G., 1978, “The Global Optimization Problem: An Introduction,” Toward Global Optimization 2, L. Dixon and G. Szego¨, eds, North-Holland, New York, pp. 1–15.
38.
Hock, W., and Schittkowski, K., 1981, Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer-Verlag, Berlin, Heidelberg, New York.
39.
Pardalos, P. M., and Rosen, J. B., 1987, Constrained Global Optimization: Algorithms and Applications, Lecture Notes in Economics and Mathematical Systems, Vol. 268, Springer-Verlag, Berlin, Heidelberg, New York.
40.
Schittkowski, K., 1987, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 282, Springer-Verlag, Berlin, Heidelberg, New York.
41.
To¨rn, A., and Zilinskas, A., 1987, Global Optimization, Lecture Notes in Computer Science, Vol. 350, Springer, Berlin, Heidelberg, New York.
42.
Jones
,
D. R.
,
Perttuen
,
C. D.
, and
Stuckman
,
B. E.
,
1993
, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
,
79
(
1
), pp.
157
181
.
43.
Gold, S., and Krishnamurty, S., 1997, “Trade-offs in Robust Engineering Design,” Proceedings of the 1997 ASME Design Engineering Technical Conferences, DETC97/DAC3757, September 14–17, Saramento, California.
You do not currently have access to this content.