Variability is the inherent randomness in systems, whereas incertitude is due to lack of knowledge. In this paper, a generalized hidden Markov model (GHMM) is proposed to quantify aleatory and epistemic uncertainties simultaneously in multiscale system analysis. The GHMM is based on a new imprecise probability theory that has the form of generalized interval. The new interval probability resembles the precise probability and has a similar calculus structure. The proposed GHMM allows us to quantify cross-scale dependency and information loss between scales. Based on a generalized interval Bayes’ rule, three cross-scale information assimilation approaches that incorporate uncertainty propagation are also developed.

1.
Walley
,
P.
, 1991,
Statistical Reasoning With Imprecise Probabilities
,
Chapman & Hall
,
London
.
2.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
, 2002, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
0951-8320,
75
(
3
), pp.
333
357
.
3.
Klir
,
G. J.
, 2006,
Uncertainty and Information: Foundation of Generalized Information Theory
,
Wiley
,
New York
.
4.
Campolongo
,
F.
,
Saltelli
,
A.
, and
Tarantola
,
S.
, 2000, “
Sensitivity Analysis as an Ingredient of Modeling
,”
Stat. Sci.
0883-4237,
15
(
4
), pp.
377
395
.
5.
Hoffman
,
F. O.
, and
Hammonds
,
J. S.
, 1994, “
Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability
,”
Risk Anal.
0272-4332,
14
(
5
), pp.
707
712
.
6.
Elishakoff
,
I.
, and
Ren
,
Y.
, 2003,
Finite Element Methods for Structures With Large Stochastic Variations
,
Oxford University Press
,
Oxford
.
7.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Random Field Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
(
10
), pp.
1831
1845
.
8.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 2003,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
9.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,”
J. Comput. Phys.
0021-9991,
187
(
1
), pp.
137
167
.
10.
Xiu
,
D.
, and
Hesthaven
,
J. S.
, 2005, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
27
(
3
), pp.
1118
1139
.
11.
Babuška
,
I.
,
Nobile
,
F.
, and
Tmpone
,
R.
, 2007, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
45
(
3
), pp.
1005
1034
.
12.
Sudret
,
B.
, and
Der Kiureghian
,
A.
, 2000, “
Stochastic Finite Element Methods and Reliability—A State-of-the-Art Report
,” University of California Berkeley Report No. UCB/SEMM-2000/08.
13.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Bréchet
Y.
, 1992, “
Dislocation Microstructures in Two Dimensions: I. Relaxed Structures, Modeling Simulation
,”
Solid State Phenom.
1012-0394,
23–24
, pp.
455
472
.
14.
Hähner
,
P.
, 1996, “
A Theory of Dislocation Cell Formation Based on Stochastic Dislocation Dynamics
,”
Acta Mater.
1359-6454,
44
(
6
), pp.
2345
2352
.
15.
El-Azab
,
A.
, 2000, “
Statistical Mechanics Treatment of the Evolution of Dislocation Distributions in Single Crystals
,”
Phys. Rev. B
0556-2805,
61
(
18
), pp.
11956
11966
.
16.
Zaiser
,
M.
, 2001, “
Statistical Modeling of Dislocation Systems
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
304
315
.
17.
Hiratani
,
M.
, and
Zbib
,
H. M.
, 2003, “
On Dislocation-Defect Interactions and Patterning: Stochastic Discrete Dislocation Dynamics (SDD)
,”
J. Nucl. Mater.
0022-3115,
323
(
2–3
), pp.
290
303
.
18.
Liu
,
W. K.
,
Siad
,
L.
,
Tian
,
R.
,
Lee
,
S.
,
Lee
,
D.
,
Yin
,
X.
,
Chen
,
W.
,
Chan
,
S.
,
Olson
,
G. B.
,
Lindgen
,
L. -E.
,
Horstemeyer
,
M. F.
,
Chang
,
Y. -S.
,
Choi
,
J. -B.
, and
Kim
,
Y. J.
, 2009, “
Complexity Science of Multiscale Materials via Stochastic Computations
,”
Int. J. Numer. Methods Eng.
0029-5981,
80
(
6–7
), pp.
932
978
.
19.
Choi
,
M. J.
,
Chandrasekaran
,
V.
,
Malioutov
,
D. M.
,
Johnson
,
J. K.
, and
Willsky
,
A. S.
, 2008, “
Multiscale Stochastic Modeling for Tractable Inference and Data Assimilation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
43–44
), pp.
3492
3515
.
20.
Chamoin
,
L.
,
Oden
,
J. T.
, and
Prudhomme
,
S.
, 2008, “
A Stochastic Coupling Method for Atomic-to-Continuum Monte-Carlo Simulations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
43–44
), pp.
3530
3546
.
21.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
, 2008, “
Modeling Multiscale Diffusion Processes in Random Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
43–44
), pp.
3560
3573
.
22.
Arnst
,
M.
, and
Ghanem
,
R.
, 2008, “
Probabilistic Equivalence and Stochastic Model Reduction in Multiscale Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
43–44
), pp.
3584
3592
.
23.
Yin
,
X.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
, 2009, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
0161-8458,
131
(
2
), p.
021006
.
24.
Chen
,
W.
,
Yin
,
X.
,
Lee
,
S.
, and
Liu
,
W. K.
, 2010, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
132
(
4
), p.
041006
.
25.
van Fraassen
,
B.
, 1989,
Laws and Symmetry
,
Clarendon
,
Oxford
.
26.
Dempster
,
A.
, 1967, “
Upper and Lower Probabilities Induced by a Multi-Valued Mapping
,”
Ann. Math. Stat.
0003-4851,
38
(
2
), pp.
325
339
.
27.
Shafer
,
G. A.
, 1990,
Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
28.
Williams
,
P. M.
, 2007, “
Notes on Conditional Previsions
,”
Int. J. Approx. Reason.
0888-613X,
44
, pp.
366
383
.
29.
Dubois
,
D.
, and
Prade
,
H.
, 1988,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Plenum
,
New York
.
30.
Ferson
,
S.
,
Kreinovich
,
V.
,
Ginzburg
,
L.
,
Myers
,
D. S.
, and
Sentz
,
K.
, 2003, “
Constructing Probability Boxes and Dempster-Shafer Structures
,” Sandia National Laboratories Technical Report No. SAND2002-4015.
31.
Weichselberger
,
K.
, 2000, “
The Theory of Interval-Probability as a Unifying Concept for Uncertainty
,”
Int. J. Approx. Reason.
0888-613X,
24
(
2–3
), pp.
149
170
.
32.
Molchanov
,
I.
, 2005,
Theory of Random Sets
,
Springer
,
London
.
33.
Kuznetsov
,
V. P.
, 1995, “
Interval Methods for Processing Statistical Characteristics
,”
Proceedings of the 1995 International Workshop on Applications of Interval Computations
, El Paso, TX.
34.
Möller
,
B.
, and
Beer
,
M.
, 2004,
Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics
,
Springer
,
Berlin
.
35.
Neumaier
,
A.
, 2004, “
Clouds, Fuzzy Sets, and Probability Intervals
,”
Reliab. Comput.
1385-3139,
10
(
4
), pp.
249
272
.
36.
Wang
,
Y.
, 2008, “
Imprecise Probabilities With a Generalized Interval Form
,”
Proceedings of the Third Workshop on Reliability Engineering Computing (REC’08)
, Savannah, GA, pp.
45
59
.
37.
Wang
,
Y.
, 2010, “
Imprecise Probabilities Based on Generalized Intervals for System Reliability Assessment
,”
International Journal of Reliability & Safety
1479-389X,
4
(
4
), pp.
319
342
.
38.
Kaucher
,
E.
, 1980, “
Interval Analysis in the Extended Interval Space IR
,”
Computing Supplementa
, Suppl. 2,
Springer-Verlag
,
New York
, pp.
33
49
.
39.
Gardeñes
,
E.
,
Sainz
,
M. Á.
,
Jorba
,
L.
,
Calm
,
R.
,
Estela
,
R.
,
Mielgo
,
H.
, and
Trepat
,
A.
, 2001, “
Modal Intervals
,”
Reliab. Comput.
1385-3139,
7
(
2
), pp.
77
111
.
40.
Dimitrova
,
N. S.
,
Markov
,
S. M.
, and
Popova
,
E. D.
, 1992, “
Extended Interval Arithmetics: New Results and Applications
,”
Computer Arithmetic and Enclosure Methods
,
L.
Atanassova
and
J.
Herzberger
, eds., pp.
225
232
.
41.
Moore
,
R. E.
, 1966,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
42.
Wang
,
Y.
, 2008, “
Semantic Tolerance Modeling With Generalized Intervals
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
081701
.
43.
Wang
,
Y.
, 2008, “
Closed-Loop Analysis in Semantic Tolerance Modeling
,”
ASME J. Mech. Des.
0161-8458,
130
(
6
), p.
061701
.
44.
Wang
,
Y.
, 2008, “
Interpretable Interval Constraint Solvers in Semantic Tolerance Analysis
,”
Comput.-Aided Des.
0010-4485,
5
(
5
), pp.
654
666
.
45.
MacDonald
,
I. L.
, and
Zucchini
,
W.
, 1997,
Hidden Markov and Other Models for Discrete-Valued Time Series
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
46.
Cappé
,
O.
,
Moulines
,
E.
, and
Rydén
,
T.
, 2005,
Inference in Hidden Markov Models
,
Springer
,
New York
.
47.
Fine
,
S.
,
Singer
,
Y.
, and
Tishby
,
N.
, 1998, “
The Hierarchical Hidden Markov Model: Analysis and Applications
,”
Mach. Learn.
0885-6125,
32
, pp.
41
62
.
48.
Bouman
,
C. A.
, and
Shapiro
,
M.
, 1994, “
A Multiscale Random Field Model for Bayesian Image Segmentation
,”
IEEE Trans. Image Process.
1057-7149,
3
(
2
), pp.
162
177
.
49.
Laferté
,
J. M.
,
Perez
,
P.
, and
Heitz
,
F.
, 2000, “
Discrete Markov Modeling and Inference on the Quad-Tree
,”
IEEE Trans. Image Process.
1057-7149,
9
(
3
), pp.
390
404
.
50.
Deshmukh
,
S.
, and
Ounaies
,
Z.
, 2009, “
Single Walled Carbon Nanotube (SWNT)-Polymide Nanocomposites as Electrostrictive Materials
,”
Sens. Actuators, A
0924-4247,
155
(
2
), pp.
246
252
.
51.
Dai
,
H.
,
Wong
,
E. W.
, and
Lieber
,
C. M.
, 1996, “
Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes
,”
Science
0036-8075,
272
(
5261
), pp.
523
526
.
52.
Ebbesen
,
T. W.
,
Lezec
,
H. J.
,
Hiura
,
H.
,
Bennett
,
J. W.
,
Ghaemi
,
H. F.
, and
Thio
,
T.
, 1996, “
Electrical Conductivity of Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
382
, pp.
54
56
.
53.
Bauhofer
,
W.
, and
Kovacs
,
J. Z.
, 2009, “
A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
69
(
10
), pp.
1486
1498
.
You do not currently have access to this content.