Bioinspired design is the adaptation of methods, strategies, or principles found in nature to solve engineering problems. One formalized approach to bioinspired solution seeking is the abstraction of the engineering problem into a functional need and then seeking solutions to this function using a keyword type search method on text based biological knowledge. These function keyword search approaches have shown potential for success, but as with many text based search methods, they produce a large number of results, many of little relevance to the problem in question. In this paper, we develop a method to train a computer to identify text passages more likely to suggest a solution to a human designer. The work presented examines the possibility of filtering biological keyword search results by using text mining algorithms to automatically identify which results are likely to be useful to a designer. The text mining algorithms are trained on a pair of surveys administered to human subjects to empirically identify a large number of sentences that are, or are not, helpful for idea generation. We develop and evaluate three text classification algorithms, namely, a Naïve Bayes (NB) classifier, a k nearest neighbors (kNN) classifier, and a support vector machine (SVM) classifier. Of these methods, the NB classifier generally had the best performance. Based on the analysis of 60 word stems, a NB classifier's precision is 0.87, recall is 0.52, and F score is 0.65. We find that word stem features that describe a physical action or process are correlated with helpful sentences. Similarly, we find biological jargon feature words are correlated with unhelpful sentences.

References

1.
See http://www.asknature.org/ for AskNature.
2.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2010
, “
DANE: Fostering Creativity in and Through Biologically Inspired Design
,” Design Creativity 2010, T. Taura and Y. Nagai, eds., Springer, London, pp. 115–122.
3.
Srinivasan
,
V.
, and
Chakrabarti
,
A.
,
2009
, “
Sapphire—An Approach to Analysis and Synthesis
,”
17th International Conference on Engineering Design, Vol. 2: Design Theory and Research Methodology (ICED’09)
, Palo Alto, CA, Aug. 25–27, pp.
417
428
.
4.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyreva
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.10.1098/rsif.2006.0127
5.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
,
2008
, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121102
.10.1115/1.2992062
6.
Cheong
,
H.
,
Shu
,
L.
,
Stone
,
R.
, and
McAdams
,
D.
,
2008
, “
Translating Terms of the Functional Basis into Biologically Meaningful Keywords
,”
ASME
Paper No. DETC2008-4936310.1115/DETC2008-49363.
7.
Shu
,
L. H.
,
2010
, “
A Natural-Language Approach to Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
507
519
.10.1017/S0890060410000363
8.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.10.1115/1.4003249
9.
Nagel
,
J.
,
Stone
,
R.
, and
McAdams
,
D. A.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
ASME
Paper No. DETC2010-2823310.1115/DETC2010-28233.
10.
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2011
, “
Foraging for Inspiration: Understanding and Supporting the Online Information Seeking Practices of Biologically Inspired Designers
,”
ASME
Paper No. DETC2011-4823810.1115/DETC2011-48238
11.
Vattam
,
S.
, and
Goel
,
A.
,
2013
, “
Seeking Bioinspiration Online: A Descriptive Account
,”
Proceedings of the 19th International Conference on Engineering Design (ICED13)
, Sungkyunkwan University, Seoul, Korea, Aug. 19–22, S. V. Udo Lindemann, Yong Se Kim, Sang Won Lee, John Clarkson, Gaetano Cascini, eds., Design Society, Seoul, Korea, pp.
347
356
.
12.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vatta
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.10.1017/S0890060409000080
13.
Goel
,
A.
, and
Bhatta
,
S.
,
2004
, “
Design Patterns: An Unit of Analogical Transfer in Creative Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.10.1016/j.aei.2004.09.003
14.
Bhatta
,
S.
, and
Goel
,
A.
,
1997
, “
Learning Generic Mechanisms for Innovative Design Adaptation
,”
J. Learning Sci.
,
6
(
4
), pp.
367
396
.10.1207/s15327809jls0604_2
15.
Bhatta
,
S.
, and
Goel
,
A.
,
1994
, “
Innovations in Analogical Design: A Model-Based Approach
,”
Proceedings of the Third Annual Conference on Artifical Intelligence in Design (AID-94)
, Lausanne, Switzerland, Aug. 15–18, pp. 55–74.
16.
Vandevenne
,
D.
,
Verhaegen
,
P.-A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2012
, “
Automatically Populating the Biomimicry Taxonomy for Scalable Systematic Biologically-Inspired Design
,”
ASME
Paper No. DETC2012-70928.10.1115/DETC2012-70928
17.
Vandevenne
,
D.
,
Verhaegen
,
P.-A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
A Scalable Approach for the Integration of Large Knowledge Repositories in the Biologically-Inspired Design Process
,”
Proceedings of the 18th International Conference on Engineering Design (ICED’11)
, Copenhagen, Denmark, Aug. 15–19.
18.
Ke
,
J.
,
Chiu
,
I.
,
Wallace
,
J.
, and
Shu
,
L. H.
,
2010
, “
Supporting Biomimetic Design by Embedding Metadata in Natural-Language Corpora
,”
ASME
Paper No. DETC2010-2905710.1115/DETC2010-29057.
19.
Cheong
,
H.
,
Hallihan
,
G.
, and
Shu
,
L. H.
,
2012
, “
Understanding Analogical Reasoning in Biomimetic Design: An Inductive Approach
,” Design Computing and Cognition’12, College Station, TX.
20.
Vakili
,
V.
, and
Shu
,
L. H.
, 2001, “
Towards Biomimetic Concept Generation
,”
Proceedings of the ASME Design Engineering Technical Conference
, pp.
327
335
.
21.
Hacco
,
E.
, and
Shu
,
L. H.
,
2002
, “
Biomimetic Concept Generation Applied to Design for Remanufacture
,”
ASME
Paper No. DETC2002/DFM-34177.10.1115/DETC2002/DFM-34177
22.
Chiu
,
I.
, and
Shu
,
L. H.
,
2004
, “
Natural Language Analysis for Biomimetic Design
,”
ASME
Paper No. DETC2004-57250.10.1115/DETC2004-57250
23.
Chiu
,
I.
, and
Shu
,
L. H.
,
2007
, “
Biomimetic Design Through Natural Language Analysis to Facilitate Cross-Domain Information Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
(
1
), pp.
45
59
.
24.
Chiu
,
I.
, and
Shu
,
L. H.
,
2005
, “
Bridging Cross-Domain Terminology for Biomimetic Design
,”
ASME
Paper No. DETC2005-8490810.1115/DETC2005-84908.
25.
Stroble
,
J. K.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2009
, “
Conceptualization of Biomimetic Sensors Through Functional Representation of Natural Sensing Solutions
,”
Proceedings of the 17th International Conference on Engineering Design (ICED'09)
, Vol.
2
, Palo Alto, CA, Aug. 24–27, pp.
53
64
.
26.
Glier
,
M. W.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
,
2013
, “
An Experimental Investigation of Analogy Formation Using the Engineering-to-Biology Thesaurus
,”
ASME
Paper No. DETC2013-13160.10.1115/DETC2013-13160
27.
Tinsley
,
A.
,
Midha
,
P. A.
,
Nagel
,
R. L.
,
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Shu
,
L. H.
,
2007
, “
Exploring the Use of Functional Models as a Foundation for Biomimetic Conceptual Design
,”
ASME
Paper No. DETC2007-3560410.1115/DETC2007-35604.
28.
Vattam
,
S.
,
Helms
,
M.
, and
Goel
,
A. K.
,
2007
, “
Biologically-Inspired Innovation in Engineering Design: A Cognitive Study
,” Technical Report No. GIT-GVU-07-07
30.
Glier
,
M. W.
,
Tsenn
,
J.
,
Linsey
,
J. S.
, and
McAdams
,
D. A.
,
2012
, “
Evaluating the Directed Method for Bioinspired Design
,”
ASME
Paper No. DETC2012-71511.10.1115/DETC2012-71511
31.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.10.1115/1.4003498
32.
Kim
,
J. W.
,
McAdams
,
D. A.
, and
Linsey
,
J.
,
2014
, “
Helping Students to Find Biological Inspiration: Impact of Valuableness and Presentation Format
,” ASEE/IEEE Frontiers in Education, Madrid, Spain, Oct. 22–25.
33.
Genco
,
N.
,
Hölttä-Otto
,
K.
, and
Seepersad
,
C.
,
2010
, “
An Experimental Investigation of the Innovation Capabilities of Engineering Students
,”
Proceedings of the ASEE Annual Conference and Exposition
, Louisville, KY, June 20–23.
34.
Feldman
,
R.
, and
Sanger
,
J.
,
2007
,
The Text Mining Handbook: Advances Approaches in Analyzing Unstructured Data
,
Cambridge University Press
,
New York
.
35.
Domingos
,
P.
, and
Pazzani
,
M.
,
1997
, “
On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss
,”
Machine Learning
,
29
(
2
), pp.
103
130
.10.1023/A:1007413511361
36.
Kim
,
S.-B.
,
Han
,
K.-S.
,
Rim
,
H.-C.
, and
Myaeng
,
S. H.
,
2006
, “
Some Effective Techniques for Naive Bayes Text Classification
,”
IEEE Trans. Knowledge Data Eng.
,
18
(
11
), pp.
1457
1466
.10.1109/TKDE.2006.180
37.
Lewis
,
D. D.
,
1998
, “
Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval
,”
Machine Learning: ECML-98
,
Springer
, Berlin, Heidelberg, pp.
4
15
.
38.
Witten
,
I. H.
, and
Frank
,
E.
,
2005
,
Data Mining: Practical Machine Learning Tools and Techniques
,
Morgan Kaufmann
, Boston, MA.
39.
Vapnik
,
V.
,
1999
,
The Nature of Statistical Learning Theory
,
Springer
, New York.
40.
Joachims
,
T.
,
1998
, “
Text Categorization With Support Vector Machines: Learning With Many Relevant Features
,” Machine Learning: ECML-98, Springer, Berlin, Heidelberg, pp.
137
142
.
41.
Brank
,
J.
,
Grobelnik
,
M.
,
Milic-Frayling
,
N.
, and
Mladenic
,
D.
, 2002, “
Interaction of Feature Selection Methods and Linear Classification Models
,”
Proceeding of Workshop on Text Learning held at ICML
.
42.
Fan
,
R. E.
,
Chen
,
P. H.
, and
Lin
,
C. J.
,
2005
, “
Working Set Selection Using Second Order Information for Training SVM
,”
J. Mach. Learn. Res.
, pp.
1889
1918
.
43.
Blake
,
C.
, and
Pratt
,
W.
, 2001, “
Better Rules, Fewer Features: A Semantic Approach to Selecting Features From Text
,” Proceedings
IEEE
International Conference on Data Mining (ICDM 2001), San Jose, CA, Nov. 29–Dec. 2, pp.
59
66
.10.1109/ICDM.2001.989501
44.
Feldman
,
R.
, and
Hirsh
,
H.
,
1996
, “
Mining Associations in Text in the Presence of Background Knowledge
,”
Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining
, pp.
343
346
.
45.
Wilcox
,
A.
,
Hripcsak
,
G.
, and
Friedman
,
C.
,
2000
, “
Using Knowledge Sources to Improve Classification of Medical Text Reports
,” Proceedings of Workshop on Text Mining KDD-2000.
46.
Yang
,
K.
, and
Kapur
,
K. C.
, 1997, “
Customer Driven Reliability: Integration of QFD and Robust Design
,”
Proceedings of the Annual Reliability and Maintainability Symposium
, Philadelphia, PA, Jan. 13–16, pp.
339
345
.10.1109/RAMS.1997.57173010.1109/RAMS.1997.571730
47.
Bird
,
S.
,
Klein
,
E.
, and
Loper
,
E.
,
2009
,
Natural Language Processing With Python,
O'Reilly, Cambridge, MA.
48.
Marcus
,
M.
,
2013
, “
Treebank Tokenization
,”
http://
www.cis.upenn.edu/∼treebank/tokenization.html
49.
Salton
,
G.
,
1971
,
The SMART Retrieval System - Experiments in Automatic Document Processing
,
Prentice-Hall, Inc.
, Englewood Cliffs, NJ.
50.
Van Rijsbergen
,
C. J.
,
Robertson
,
S. E.
, and
Porter
,
M. F.
,
1980
,
New Models in Probabilistic Information Retrieval
,
Computer Laboratory, University of Cambridge
, UK.
51.
Porter
,
M. F.
,
1980
, “
An Algorithm for Suffix Stripping
,”
14
(3), pp. 130–137.
52.
Paice
,
C. D.
,
1990
, “
Another Stemmer
,”
SIGIR Forum
,
24
(
3
), pp.
56
61
.10.1145/101306.101310
53.
Saeys
,
Y.
,
Inza
,
I.
, and
Larrañaga
,
P.
,
2007
, “
A Review of Feature Selection Techniques in Bioinformatics
,”
Bioinformatics
,
23
(
19
), pp.
2507
2517
.10.1093/bioinformatics/btm344
54.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
, pp.
1157
1182
.
55.
Forman
,
G.
,
2003
, “
An Extensive Empirical Study of Feature Selection Metrics for Text Classification
,”
J. Mach. Learn. Res.
,
3
, pp.
1289
1305
.
56.
Yang
,
Y.
, and
Pedersen
,
J. O.
, “
A Comparative Study on Feature Selection in Text Categorization
,”
Proceedings of the Fourteenth International Conference on Machine Learning
, Vol. 97,
Morgan Kaufmann Publishers, Inc.
, pp.
412
420
.
57.
Berry
,
M. W.
, and
Kogan
,
J.
,
2010
,
Text Mining: Applications and Theory
,
Wiley
, Chichester, UK.
58.
Goel
,
A.
,
1997
, “
Design, Analogy and Creativity
,”
IEEE Exp. Intell. Syst. Appl.
,
12
(
3
), pp.
62
70
.
59.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design by Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.10.1115/1.1475317
You do not currently have access to this content.