Searching for biological analogies appropriate for design problems is a core process of biologically inspired design (BID). Through in situ observations of student BIDs, we discovered that student designers struggle with two issues that bookend the problem of search: design problem formulation, which generates the set of conditions to be used for search; and evaluation of the appropriateness of the retrieved analogies, which depends both on problem formulation and the retrieved analogy. We describe a method for problem formulation and analogy evaluation in BID that we call the Four-Box method. We show that the Four-Box method can be rapidly and accurately used by designers for both problem formulation and analogy evaluation, and that designers find the method valuable for the intended tasks.

References

1.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
, pp.
113
132
.10.1017/S0890060405050109
2.
Chiu
, I
.
, and
Shu
,
L. H.
,
2007
, “
Biomimetic Design Through Natural Language Analysis to Facilitate Cross-Domain Information Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
, pp.
45
59
.10.1017/S0890060407070138
3.
Nagel
,
J.
,
Stone
,
R.
, and
McAdams
,
D.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
ASME
Paper No. DETC2010-28233,
Montreal
,
Canada
.10.1115/DETC2010-28233
4.
Vattam
,
S.
, and
Goel
,
A.
,
2011
, “
Foraging for Inspiration: Understanding and Supporting the Information Seeking Practices of Biologically Inspired Designers
,”
Proceedings of ASME IDETC Conference on Design Theory and Methods
,
Washington
,
DC
, Aug. 28–31.
5.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
–482.10.1098/rsif.2006.0127
6.
Helms
,
M.
,
Vattam
,
S.
, and
Goel
,
A.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.10.1016/j.destud.2009.04.003
7.
Wirth
,
N.
,
1971
, “
Program Development by Stepwise Refinement
,”
Commun. ACM
,
14
(
4
), pp.
221
227
.10.1145/362575.362577
8.
Dahl
,
O.
,
Dykstra
,
E.
, and
Hoare
,
C.
,
1972
,
Structured Programming
,
Academic
,
New York
.
9.
Roozenburg
,
N.
, and
Eekels
,
J.
,
1995
,
Product Design: Fundamentals and Methods
,
Wiley
,
Chichester, UK
.
10.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
J.-H.
,
2007
,
Engineering Design
(K. Wallace and L. Blessing, Translators),
The Design Council
,
London, UK
.
11.
Yen
,
J.
,
Weissburg
,
M.
,
Helms
,
M.
, and
Goel
,
A.
,
2011
, “
Biologically Inspired Design: A Tool for Interdisciplinary Education
,”
Biomimetics: Nature-Based Innovation
,
Y.
Bar-Cohen
, ed.,
Taylor & Francis
,
London, UK
.
12.
Yen
,
J.
,
Helms
,
M.
,
Goel
,
A.
,
Tovey
,
C.
, and
Weissburg
,
M.
,
2013
, “
Adaptive Evolution of Teaching Practices in Biologically Inspired Design
,”
Biologically Inspired Design: Computational Methods and Tools
,
A.
Goel
,
D.
McAdams
, and
R.
Stone
, eds.,
Springer
,
London, UK
.
13.
Chandrasekaran
,
B.
,
1990
, “
Design Problem Solving: A Task Analysis
,”
AI Mag.
,
11
(
4
), p. 59.
14.
Darke
,
J.
,
1979
, “
The Primary Generator and the Design Process
,”
Des. Stud.
,
1
(
1
), pp.
36
44
.10.1016/0142-694X(79)90027-9
15.
Dorst
,
K.
,
2003
, “
The Problem of Design Problems
,”
Expertise in Design
,
N.
Cross
and
E.
Edmonds
, eds.,
Creativity and Cognition Studio Press
,
Sydney
, pp.
135
147
.
16.
Dorst
,
K.
, and
Cross
,
N.
,
2001
, “
Creativity in the Design Process: Co-Evolution of Problem-Solution
,”
Des. Stud.
,
22
(
5
), pp.
425
437
.10.1016/S0142-694X(01)00009-6
17.
Gero
,
J.
,
1996
, “
Creativity, Emergence and Evolution in Design
,”
Knowl.-Based Syst.
,
9
(
7
), pp.
435
448
.10.1016/S0950-7051(96)01054-4
18.
Goel
,
V.
, and
Pirolli
,
P.
,
1992
, “
The Structure of Design Problem Spaces
,”
Cogn. Sci.
,
16
, pp.
395
429
.10.1207/s15516709cog1603_3
19.
Helms
,
M.
, and
Goel
,
A.
,
2012
, “
Analogical Problem Evolution in Biologically Inspired Design
,”
Proceedings of Fifth International Conference on Design Computing and Cognition
,
College Station
,
TX
, June 7–9.
20.
Ho
,
C.-H.
,
2001
, “
Some Phenomena of Problem Decomposition Strategy for Design Thinking: Differences Between Novices and Experts
,”
Des. Stud.
,
22
(
1
), pp.
27
45
.10.1016/S0142-694X(99)00030-7
21.
Liikkanen
,
L.
, and
Perttula
,
M.
,
2008
, “
Exploring Problem Decomposition in Conceptual Design Among Novice Designers
,”
Des. Stud.
,
30
(
1
), pp.
38
59
.10.1016/j.destud.2008.07.003
22.
Lloyd
,
P.
, and
Scott
,
P.
,
1994
, “
Discovering the Design Problem
,”
Des. Stud.
,
15
(
2
), pp.
125
140
.10.1016/0142-694X(94)90020-5
23.
Maher
,
M. L.
,
Poon
,
J.
, and
Boulanger
,
S.
,
1996
, “
Formalising Design Exploration as Co-Evolution: A Combined Gene Approach
,”
Advances in Formal Design Methods for CAD
,
J. S.
Gero
and
F.
Sudweeks
, eds.,
Chapman and Hall
,
London, UK
.
24.
Restrepo
,
J.
, and
Christiaans
,
H.
,
2003
, “
Problem Structuring and Information Access in Design
,” Proceedings of the Expertise in Design: Design Thinking Research Symposium, N. Cross, and E. Edmonds (Eds.), Sydney Australia, pp. 149–162.
25.
Schön
,
D. A.
,
1983
,
The Reflective Practitioner
,
Temple-Smith
,
London, UK
.
26.
Gero
,
J.
,
1993
, “
Towards a Model of Exploration in Computer-Aided Design
,”
Formal Design Methods for Computer-Aided Design
,
J. S.
Gero
and
N.
Tyugu
, eds.,
North-Holland
,
Amsterdam
.
27.
Simon
,
H.
,
1973
, “
The Structure of Ill-Structured Problems
,”
Artif. Intell.
,
4
(3–4)
, pp.
181
201
.10.1016/0004-3702(73)90011-8
28.
Gero
,
J.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.10.1016/j.destud.2003.10.010
29.
Goel
,
A.
,
1992
, “
Representation of Design Functions in Experience-Based Design
,”
Intelligent Computer Aided Design
,
D.
Brown
,
M.
Waldron
, and
H.
Yoshikawa
, eds.,
North-Holland, Amsterdam
,
The Netherlands
, pp.
283
308
.
30.
Goel
,
A.
,
2013
, “
A 30-Year Case Study and 15 Principles: Implications of an Artificial Intelligence Methodology for Functional Modeling
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
27
, pp. 203–215.
31.
Goel
,
A.
, and
Bhatta
,
S.
,
2004
, “
Use of Design Patterns in Analogy-Based Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.10.1016/j.aei.2004.09.003
32.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2008
, “
The Effect of Representation of Triggers on Design Outcomes
,”
Artif. Intell. Des., Anal. Manuf.
,
22
(
2
), pp.
101
116
.10.1017/S0890060408000073
33.
Helms
,
M.
, and
Goel
,
A.
,
2013
, “
Grounded Knowledge Representations for Biologically Inspired Design
,”
DS 75-6: Proceedings of the 19th International Conference on Engineering Design (ICED13)
,
Design Society
, Seoul, Korea, Aug. 19–22, Vol.
6
, pp.
351
360
.
34.
Dinar
,
M.
,
Shah
,
J.
,
Hunt
,
G.
,
Campana
,
E.
, and
Langley
,
P.
,
2011
, “
Towards a Formal Representation Model of Problem Formulation in Design
,”
ASME
Paper No. DETC2011-48396.10.1115/DETC2011-48396
35.
Forbus
,
K.
,
Gentner
,
D.
, and
Law
,
K.
,
1995
, “
MAC/FAC: A Model of Similarity-Based Retrieval
,”
Cogn. Sci.
,
19
(
2
), pp.
141
205
.10.1207/s15516709cog1902_1
36.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cogn. Sci.
,
7
(
2
), pp.
155
170
.10.1207/s15516709cog0702_3
37.
Holyoak
,
K.
, and
Thagard
,
P.
,
1995
,
Mental Leaps: Analogy in Creative Thought
,
MIT
,
Cambridge, MA
.
38.
Thagard
,
P.
,
Holyoak
,
K. J.
,
Nelson
,
G.
, and
Gochfeld
,
D.
,
1990
, “
Analog Retrieval by Constraint Satisfaction
,”
Artif. Intell.
,
46
, pp.
259
310
.10.1016/0004-3702(90)90018-U
39.
Yaner
,
P.
, and
Goel
,
A.
,
2006
, “
Visual Analogy: Viewing Retrieval and Mapping as Constraint Satisfaction
,”
J. Appl. Intell.
,
25
(
1
), pp.
91
105
.10.1007/s10489-006-8868-x
40.
Goel
,
A.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Des., Anal. Manuf.
,
23
(
1
), pp.
23
35
.10.1017/S0890060409000080
41.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M.
,
2012
, “
Cognitive, Collaborative, Conceptual and Creative—Four Characteristics of the Next Generation of Knowledge-Based CAD Systems: A Study in Biologically Inspired Design
,”
Comput.-Aided Des.
,
44
(
10
), pp.
879
900
.
42.
Glaser
,
B. G.
, and
Strauss
,
A. L.
,
2009
,
The Discovery of Grounded Theory: Strategies for Qualitative Research
, Transaction Books, Piscataway, NJ.
43.
Strauss
,
A. L.
, and
Corbin
,
J.
,
1990
,
Basics of Qualitative Research
, Vol.
15
, Sage Publications,
Newbury
Park, CA
.
44.
Lamp
,
J.
, and
Milton
,
S.
,
2007
, “
Grounded Theory as Foundations for Methods in Applied Ontology
,”
Proceedings of the 4th International Conference on Qualitative Research in IT & IT in Qualitative Research (QualIT)
,
Victoria University of Wellington
, Wellington, New Zealand, Nov. 18–20.
45.
Helms
,
M.
,
2013
, “
Analogical Problem Evolution in Biologically Inspired Design
,” Doctoral dissertation, Georgia Institute of Technology,
Atlanta
,
GA
.
You do not currently have access to this content.