Inherent in biologically inspired design (BID) is the selection of one or more analogs from which one or more strategies are extracted and transferred into the engineering domain. The selection of an analog is a fundamental step in biomimetic process, but locating relevant biological analogies can be challenging. Often, designers may fixate on an analogy or choose an established analogy without rigorous examination of alternatives. This practice is problematic—as basing a new design on an invalid assumption can lead to suboptimal results. This paper makes contribution to evaluation of analogy utility. The contribution is made by combining stochastic multicriteria acceptability analysis (SMAA) with a set of criteria, derived from BID, to assist multidisciplinary decision makers (DMs) in evaluating candidate design analogs. The resulting framework, which we call the biotransferability framework, is being developed to assist multidisciplinary teams to choose, rank, or sort candidate design analogs by assessing biology-to-engineering transfer risk.

References

1.
Hesselberg
,
T.
, “
Biomimetics: Learning From Nature
,” www.brlsi.org
2.
Bar-Cohen
,
Y.
,
2006
, “
Biomimetics—Using Nature to Inspire Human Innovation
,”
Bioinspir. Biomim.
,
1
(
1
), pp.
p1
p12
.10.1088/1748-3182/1/1/P01
3.
Timmis
,
J.
,
Amos
,
M.
,
Banzhaf
,
W.
, and
Tyrrell
,
A.
,
2005
, “‘
Going Back to Our Roots’: Second Generation Biocomputing
,”
e-print arXiv:cs/0512071 [cs.AI]
.
4.
Cheong
,
H.
, and
Shu
,
L. H.
,
2010
, “
Supporting Creative Concept Generation by Engineering Students With Biomimetic Design
,”
Proceedings of the Canadian Engineering
Education Association, Queen's University Kingston, Ontario June 7–9.
5.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.10.1016/j.destud.2009.04.003
6.
Helms
,
M.
,
Vattam
,
S.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2008
, “
Problem-Driven and Solution-Based Design: Twin Processes of Biologically Inspired Design
,” http://www.yen.biology.gatech.edu/papers/HelmsVattamGoelYenWeissburg.pdf.
7.
Vattam
,
S. S.
,
Helms
,
M. E.
, and
Goel
,
A. K.
,
2008
, “
Compound Analogical Design: Interaction Between Problem Decomposition and Analogical Transfer in Biologically Inspired Design
,”
Design Computing and Cognition'08
.
8.
Matzinger
,
P.
,
2002
, “
The Danger Model: A Renewed Sense of Self
,”
Science
,
296
(
5566
), pp.
301
305
.10.1126/science.1071059
9.
Jeannette
,
Y.
,
Helms
,
M.
, and
Vattam
,
S.
,
2010
, “
Evaluating Biological Systems for Their Potential in Engineering Design
,”
Adv. Nat.
,
3
(
2
)10.3968%2Fj.ans.1715787020100302.003.
10.
Lahdelma
,
R.
,
Hokkanen
,
J.
, and
Salminen
,
P.
,
1998
, “
SMAA—Stochastic Multiobjective Acceptability Analysis
,”
Eur. J. Oper.
,
106
(
1
), pp.
137
143
.10.1016/S0377-2217(97)00163-X
11.
Tervonen
,
T.
, and
Figueira
,
J. R.
,
2008
, “
A Survey on Stochastic Multicriteria Acceptability Analysis Methods
,”
J. Multi-Crit. Decis. Anal.
,
15
(
1
), pp.
1
14
.10.1002/mcda.407
12.
Gebeshuber
, I
. C.
,
Gruber
,
P.
, and
Drack
,
M.
,
2009
, “
A Gaze Into the Crystal Ball: Biomimetics in the Year 2059
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
12
), pp.
2899
2918
.10.1243/09544062JMES1563
13.
Tervonen
,
T.
,
2012
, “
JSMAA: Open Source Software for SMAA Computations
,”
Int. J. Syst. Sci.
,
2012
, pp.
1
13
.
14.
Williamson
,
M. M.
,
2002
, “
Biologically Inspired Approaches to Computer Security
,”
Information Infrastructure Laboratory
, Technical Report No. HPL-2002-131.
15.
Bar-Cohen
,
Y.
,
2005
, “
Biomimetics: Mimicking and Inspired-by Biology
,”
Proc. SPIE
,
5759
, pp.
1
8
.10.1117/12.597436
16.
Fratzl
,
P.
,
2007
, “
Biomimetic Materials Research: What Can We Really Learn From Nature's Structural Materials?
,”
J. R. Soc. Interface
,
4
(
15
), pp.
637
642
.10.1098/rsif.2007.0218
17.
Barsom
,
J. M.
, and
Rolfe
,
S. T.
,
1999
, “
Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics
,” Butterworth-Heinemann, Woburn, MA.
18.
Gerardi
,
J. J.
, and
Hickman
,
G. A.
,
1993
, “
Method and Apparatus for Structural Integrity Monitoring
,”
U.S. Patent No. 5,195,046
.
19.
Schijve
,
J.
,
1994
, “
Fatigue of Aircraft Materials and Structures
,”
Int. J. Fatigue
,
16
(
1
), pp.
21
32
.10.1016/0142-1123(94)90442-1
20.
Ask Nature, “
The Biomimicry Design Portal: Biomimetics, Architecture, Biology, Innovation Inspired by Nature, Industrial Design—Ask Nature—The Biomimicry Design Portal: Biomimetics, Architecture, Biology, Innovation Inspired by Nature, Industrial Design
,” (last accessed July 12,
2013
). Available at: http://www.asknature.org
21.
Vogel
,
S.
,
2013
, “
Comparative Biomechanics: Life's Physical World
,” Princeton University Press, Princeton, NJ.
22.
Ellers
,
O.
, and
Telford
,
M.
,
1992
, “
Causes and Consequences of Fluctuating Coelomic Pressure in Sea Urchins
,”
Biol. Bull.
,
182
(
3
), pp.
424
434
.10.2307/1542262
23.
Telford
,
M.
,
1985
, “
Domes, Arches and Urchins: The Skeletal Architecture of Echinoids (Echinodermata)
,”
Zoomorphology
,
105
(
2
), pp.
114
124
.
24.
Haas
,
F.
,
Gorb
,
S.
, and
Blickhan
,
R.
,
2000
, “
The Function of Resilin in Beetle Wings
,”
Proc. R. Soc. Lond. B
,
267
(1451), pp.
1375
1381
10.1098/rspb.2000.1153.
25.
Klein
,
M.
,
Deuschle
,
J. K.
, and
Gorb
,
S. N.
,
2010
, “
Material Properties of the Skin of the Kenyan Sand Boa Gongylophis colubrinus (Squamata, Boidae)
,”
J. Comp. Physiol. A
,
196
(
9
), pp.
659
668
10.1007/s00359-010-0556-y.
26.
Wideband Delphi, “
Lean Software Engineering
,” (last accessed June 24,
2014
). Available at: http://leansoftwareengineering.com/wideband-delphi/
You do not currently have access to this content.