This paper presents performance charts that map the design space of a bio-inspired robotic condylar hinge joint. The joint mimics the design of the human knee joint by copying the condylar surfaces of the femur and tibia and by copying the four-bar motion of the cruciate ligaments. Four aspects of performance are modeled: peak mechanical advantage, RMS (root mean square) mechanical advantage, RMS sliding ratio, and range of movement. The performance of the joint is dependent on the shape of the condylar surfaces and the geometry of the four-bar mechanism. The design space for the condylar hinge joint is large because the four-bar mechanism has a very large number of possible configurations. Also, it is not intuitive what values of design parameters give the best design. Performance graphs are presented that cover over 12,000 different geometries of the four-bar mechanism. The maps are presented on three-dimensional graphs that help designers visualize the limits of performance of the joint and visualize tradeoffs between individual aspects of performance. The maps show that each aspect of performance of the joint is very sensitive to the geometry of the four-bar mechanism. The trends in performance can be understood by analyzing the kinematics of the four-bar mechanism and the shape of the condylar surfaces.

References

1.
Etoundi
,
A. C.
,
Burgess
,
S. C.
, and
Vaidyanathan
,
R.
,
2013
, “
A Bio-Inspired Condylar Hinge for Robotic Limbs
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031011
.10.1115/1.4024471
2.
Goodfellow
,
J.
, and
O'connor
,
J.
,
1978
, “
Mechanics of the Knee and Prosthesis Design
,”
J. Bone Jt. Surg., Br.
,
60
(
3
), pp.
358
369
.
3.
Hsu
,
Y.
,
Hung
,
Y.
, and
Yin
,
J.
,
2006
, “
Design of a Novel Total Knee Prosthesis Using Triz
,”
J. Med. Biol. Eng.
,
26
(
4
), pp.
177
185
.
4.
Etoundi
,
A. C.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2011
, “
A Bio-Inspired Condylar Hinge Joint for Mobile Robots
,”
IEEE/RSJ IROS International Conference on Intelligent Robots and Systems
, San Francisco, CA, September 25–30, pp.
4042
4047
.
5.
Etoundi
,
A. C.
,
Lock
,
R. J.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2013
, “
A Bio-Inspired Condylar Knee Joint for Knee Prosthetics
,”
Int. J. Des. Nat. Ecodyn.
,
8
(
3
), pp.
213
225
.10.2495/DNE-V8-N3-213-225
6.
Pasini
,
D.
,
Smith
,
D.
, and
Burgess
,
S. C.
,
2003
, “
Structural Efficiency Maps for Beams Subject to Bending
,”
Proc. Inst. Mech. Eng.
,
217
, pp.
207
220
.10.1177/146442070321700303
7.
Burgess
,
S.
,
Pasini
,
D.
, and
Alemzadeh
,
K.
,
2004
, “
Improved Visualisation of the Design Space Using Nested Performance Charts
,”
Des. Stud.
,
25
, pp.
51
62
.10.1016/S0142-694X(03)00032-2
8.
Daniel
,
R.
, and
Michael
,
C.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.10.1115/1.4007548
9.
Liu
,
X. J.
,
Wang
,
J. S.
, and
Gao
,
F.
,
2000
, “
Performance Atlases of the Workspace for Planar 3-Dof Parallel Manipulators
,”
Robotica
,
18
, pp.
563
568
.10.1017/S0263574700002678
10.
Hong
,
D. W.
, and
Cipra
,
R. J.
,
2006
, “
Visualization of the Contact Force Solution Space for Multi-Limbed Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
295
302
.10.1115/1.2118732
11.
Su
,
H. J.
, and
Mccarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
.10.1115/1.2757192
12.
Rivin
,
E. I.
,
1988
,
Mechanical Design of Robots
,
McGraw-Hill
,
New York
.
13.
Masouros
,
S. D.
,
Bull
,
A. M. J.
, and
Amis
,
A. A.
,
2010
, “
Biomechanics of the Knee Joint
,”
Orthop. Trauma
,
16
, pp.
84
91
.10.1016/j.mporth.2010.03.005
14.
Nordin
,
M.
, and
Frankel
,
V. H.
,
1989
,
Basic Biomechanics of the Musculoskeletal System
,
Lea & Febiger
,
Philadelphia, PA
.
15.
Schwenke
,
T.
,
Borgstede
,
L. L.
,
Schneider
,
E.
,
Andriacchi
,
T. P.
, and
Wimmer
,
M. A.
,
2005
, “
The Influence of Slip Velocity on Wear of Total Knee Arthroplasty
,”
Wear
,
259
(
7–12
), pp.
926
932
.10.1016/j.wear.2005.01.049
16.
Boublik
,
M.
,
Blevins
,
F. T.
, and
Steadman
,
J. R.
,
1994
, “
Anatomy: Bony Architecture, Biomechanics, and Meniscience
,”
Traumatic Disorders of the Knee
,
Springer
,
New York
, pp.
3
8
.
You do not currently have access to this content.