Highly organized, porous architectures leverage the true potential of additive manufacturing (AM) as they can simply not be manufactured by any other means. However, their mainstream usage is being hindered by the traditional methodologies of design which are heavily mathematically orientated and do not allow ease of controlling geometrical attributes. In this study, we aim to address these limitations through a more design-driven approach and demonstrate how complex mathematical surfaces, such as triply periodic structures, can be used to generate unit cells and be applied to design scaffold structures in both regular and irregular volumes in addition to hybrid formats. We examine the conversion of several triply periodic mathematical surfaces into unit cell structures and use these to design scaffolds, which are subsequently manufactured using fused filament fabrication (FFF) additive manufacturing. We present techniques to convert these functions from a two-dimensional surface to three-dimensional (3D) unit cell, fine tune the porosity and surface area, and examine the nuances behind conversion into a scaffold structure suitable for 3D printing. It was found that there are constraints in the final size of unit cell that can be suitably translated through a wider structure while still allowing for repeatable printing, which ultimately restricts the attainable porosities and smallest printed feature size. We found this limit to be approximately three times the stated precision of the 3D printer used this study. Ultimately, this work provides guidance to designers/engineers creating porous structures, and findings could be useful in applications such as tissue engineering and product light-weighting.

References

1.
Huang
,
G. L.
,
Zhou
,
S. G.
, and
Chio
,
T. H.
,
2016
, “
Lightweight Perforated Horn Antenna Enabled by 3-D Metal-Direct-Printing
,”
IEEE International Symposium on Antennas and Propagation
(
APSURSI
), Fajardo, Puerto Rico, June 26–July 1, pp.
481
482
.
2.
Rezaie
,
R.
,
Badrossamay
,
M.
,
Ghaie
,
A.
, and
Moosavi
,
H.
,
2013
, “
Topology Optimization for Fused Deposition Modeling Process
,”
Procedia CIRP
,
6
, pp.
521
526
.
3.
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2016
, “
Smart Three-Dimensional Lightweight Structure Triggered From a Thin Composite Sheet Via 3D Printing Technique
,”
Sci. Rep.
,
6
(
1
), p.
22431
.
4.
Hutmacher
,
D. W.
,
2001
, “
Scaffold Design and Fabrication Technologies for Engineering Tissues—State of the Art and Future Perspectives
,”
J. Biomater. Sci., Polym. Ed.
,
12
(
1
), pp.
107
124
.
5.
Domingos
,
M.
,
Chiellini
,
F.
,
Gloria
,
A.
,
Ambrosio
,
L.
,
Bartolo
,
P.
, and
Chiellini
,
E.
,
2012
, “
Effect of Process Parameters on the Morphological and Mechanical Properties of 3D Bioextruded Poly (ϵ-Caprolactone) Scaffolds
,”
Rapid Prototyping J.
,
18
(
1
), pp.
56
67
.
6.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
.
7.
Roohani-Esfahani
,
S.-I.
,
Newman
,
P.
, and
Zreiqat
,
H.
,
2016
, “
Design and Fabrication of 3D Printed Scaffolds With a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects
,”
Sci. Rep.
,
6
(
1
), p.
19468
.
8.
Zhang
,
X.-Y.
,
Fang
,
G.
, and
Zhou
,
J.
,
2017
, “
Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of Their Mechanical Behavior: A Review
,”
Materials
,
10
(
1
), p.
50
.
9.
Dean
,
L. T.
, and
Pei
,
E.
,
2012
, “
Experimental 3D Digital Techniques in Design Practice
,”
Second International Conference on Design Creativity
(ICDC), Glasgow, UK, Sept. 18–20, pp. 220–226.
10.
Atkinson
,
P.
,
Unver
,
E.
,
Marshall
,
J.
, and
Dean
,
L. T.
,
2009
, “
Post Industrial Manufacturing Systems: The Undisciplined Nature of Generative Design
,” Design Research Society Conference, Sheffield, UK, July 16–19.
11.
Buswell
,
R. A.
,
Soar
,
R. C.
,
Gibb
,
A. G. F.
, and
Thorpe
,
A.
,
2007
, “
Freeform Construction: Mega-Scale Rapid Manufacturing for Construction
,”
Autom. Constr.
,
16
(
2
), pp.
224
231
.
12.
Lim
,
S.
,
Buswell
,
R. A.
,
Le
,
T. T.
,
Austin
,
S. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2012
, “
Developments in Construction-Scale Additive Manufacturing Processes
,”
Autom. Constr.
,
21
, pp.
262
268
.
13.
Michielsen
,
K.
, and
Stavenga
,
D. G.
,
2008
, “
Gyroid Cuticular Structures in Butterfly Wing Scales: Biological Photonic Crystals
,”
J. R. Soc., Interface
,
5
(
18
), pp.
85
94
.
14.
Cao
,
X.
,
Xu
,
D.
,
Yao
,
Y.
,
Han
,
L.
,
Terasaki
,
O.
, and
Che
,
S.
,
2016
, “
Interconversion of Triply Periodic Constant Mean Curvature Surface Structures: From Double Diamond to Single Gyroid
,”
Chem. Mater.
,
28
(
11
), pp.
3691
3702
.
15.
Melchels
,
F. P. W.
,
Bertoldi
,
K.
,
Gabbrielli
,
R.
,
Velders
,
A. H.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography
,”
Biomaterials
,
31
(
27
), pp.
6909
6916
.
16.
Mohammed
,
M. I.
,
Badwal
,
P. S.
, and
Gibson
,
I.
,
2017
, “
Design and Fabrication Considerations for Three Dimensional Scaffold Structures
,”
KnE Eng.
,
2
(
2
), pp.
120
126
.
17.
Wang
,
Y.
,
2007
, “
Periodic Surface Modeling for Computer Aided Nano Design
,”
Comput.-Aided Des.
,
39
(
3
), pp.
179
189
.
18.
Kadkhodapour
,
J.
,
Montazerian
,
H.
, and
Raeisi
,
S.
,
2014
, “
Investigating Internal Architecture Effect in Plastic Deformation and Failure for TPMS-Based Scaffolds Using Simulation Methods and Experimental Procedure
,”
Mater. Sci. Eng.: C
,
43
, pp.
587
597
.
19.
Karcher
,
H.
, and
Polthier
,
K.
,
1996
, “
Construction of Triply Periodic Minimal Surfaces
,”
Philos. Trans. R. Soc. London A
,
354
(
1715
), pp.
2077
2104
.
20.
Yoo
,
D.-J.
,
2011
, “
Computer-Aided Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces
,”
Int. J. Precis. Eng. Manuf.
,
12
(
1
), pp.
61
71
.
21.
Yoo
,
D.-J.
,
2012
, “
Heterogeneous Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces
,”
Int. J. Precis. Eng. Manuf.
,
13
(
4
), pp.
527
537
.
22.
Shin
,
J.
,
Kim
,
S.
,
Jeong
,
D.
,
Lee
,
H. G.
,
Lee
,
D.
,
Lim
,
J. Y.
, and Kim, J.,
2012
, “
Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds
,”
Math. Probl. Eng.
,
2012
, p.
694194
.
23.
Afshar
,
M.
,
Anaraki
,
A. P.
,
Montazerian
,
H.
, and
Kadkhodapour
,
J.
,
2016
, “
Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
481
494
.
24.
Yang
,
N.
,
Quan
,
Z.
,
Zhang
,
D.
, and
Tian
,
Y.
,
2014
, “
Multi-Morphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering
,”
Comput.-Aided Des.
,
56
, pp.
11
21
.
25.
Schoen
,
A. H.
,
1970
, “
Infinite Periodic Minimal Surfaces Without Self-Intersections
,” NASA Electronics Research Center, Cambridge, MA, Technical Report No.
NASA-TN-D-5541
.https://ntrs.nasa.gov/search.jsp?R=19700020472
26.
Yoo
,
D. J.
,
2011
, “
Porous Scaffold Design Using the Distance Field and Triply Periodic Minimal Surface Models
,”
Biomaterials
,
32
(
31
), pp.
7741
7754
.
27.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer
, New York.
28.
Fukuda
,
A.
,
Takemoto
,
M.
,
Saito
,
T.
,
Fujibayashi
,
S.
,
Neo
,
M.
,
Pattanayak
,
D. K.
, Matsushita, T., Sasaki, K., Nishida, N., Kokubo, T., and Nakamura, T.,
2011
, “
Osteoinduction of Porous Ti Implants With a Channel Structure Fabricated by Selective Laser Melting
,”
Acta Biomater.
,
7
(
5
), pp.
2327
2336
.
29.
Mohammed
,
M. I.
,
Fitzpatrick
,
A. P.
, and
Gibson
,
I.
,
2017
, “
Customised Design of a Patient Specific 3D Printed Whole Mandible Implant
,”
KnE Eng.
,
2
(
2
), pp.
104
111
.
30.
Chin Ang
,
K.
,
Fai Leong
,
K.
,
Kai Chua
,
C.
, and
Chandrasekaran
,
M.
,
2006
, “
Investigation of the Mechanical Properties and Porosity Relationships in Fused Deposition Modelling‐Fabricated Porous Structures
,”
Rapid Prototyping J.
,
12
(
2
), pp.
100
105
.
31.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Young
,
P.
,
2015
, “
Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated Via Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
51
, pp.
61
73
.
32.
Fitzpatrick
,
A.
,
Mohammed
,
M. I.
,
Collins
,
P. K.
, and
Gibson
,
I.
,
2017
, “
Design of a Patient Specific, 3D Printed Arm Cast
,”
KnE Eng.
,
2
(
2
), pp.
135
142
.
33.
Taha
,
A.
,
2016
, “
MathMod 4.1
,” accessed May 15, 2018, https://sourceforge.net/projects/mathmod/
34.
Materialise
, 2017, “
3-Matic STL
,” 11.0 ed., Materialise, Leuven, Belgium.
35.
Materialise
, 2017, “
Magics
,” 21st ed., Materialise, Leuven, Belgium.
36.
Cengiz
,
I. F.
,
Pitikakis
,
M.
,
Cesario
,
L.
,
Parascandolo
,
P.
,
Vosilla
,
L.
,
Viano
,
G.
, Oliveira, J. M., and Reis, R. L.,
2016
, “
Building the Basis for Patient-Specific Meniscal Scaffolds: From Human Knee MRI to Fabrication of 3D Printed Scaffolds
,”
Bioprinting
,
1–2
, pp.
1
10
.
37.
Materialise
, 2017, “
Mimics
,” 19th ed., Materialise, Leuven, Belgium.
38.
Mohammed
,
M. I.
,
Tatineni
,
J.
,
Cadd
,
B.
,
Peart
,
G.
, and
Gibson
,
I.
,
2017
, “
Advanced Auricular Prosthesis Development by 3D Modelling and Multi-Material Printing
,”
KnE Eng.
,
2
(
2
), pp.
37
43
.
39.
Mohammed
,
M. I.
,
Cadd
,
B.
,
Peart
,
G.
, and
Gibson
,
I.
,
2018
, “
Augmented Patient-Specific Facial Prosthesis Production Using Medical Imaging Modelling and 3D Printing Technologies for Improved Patient Outcomes
,”
Virtual Phys. Prototyping
, epub.
You do not currently have access to this content.