In this paper, a microsystem with prescribed functional capabilities is designed and simulated. In particular, the development of a straight line path generator micro electro mechanical system (MEMS) device is presented. A new procedure is suggested for avoiding branch or circuit problems in the kinematic synthesis problem. Then, Ball's point detection is used to validate the obtained pseudo-rigid body model (PRBM). A compliant MEMS device is obtained from the PRBM through the rigid-body replacement method by making use of conjugate surfaces flexure hinges (CSFHs). Finally, the functional capability of the device is investigated by means of finite element analysis (FEA) simulations and experimental testing at the macroscale.
References
1.
Verotti
, M.
, Dochshanov
, A.
, and Belfiore
, N. P.
, 2017
, “A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,” ASME J. Mech. Des.
, 139
(6
), p. 060801
.2.
Dochshanov
, A.
, Verotti
, M.
, and Belfiore
, N. P.
, 2017
, “A Comprehensive Survey on Microgrippers Design: Operational Strategy
,” ASME J. Mech. Des.
, 139
(7
), p. 070801
.3.
Verotti
, M.
, Crescenzi
, R.
, Balucani
, M.
, and Belfiore
, N.
, 2015
, “MEMS-Based Conjugate Surfaces Flexure Hinge
,” ASME J. Mech. Des.
, 137
(1
), p. 012301
.4.
Arthur
, G.
, and Erdman
, E.
, 1993
, Modern Kinematics: Developments in the Last Forty Years
(Wiley Series in Design Engineering), Wiley
, New York.5.
Kempe
, A. B.
, 1875
, “On a General Method of Describing Plane Curves of the Nth Degree by Linkwork
,” Proc. London Math. Soc.
, s1–7
(1
), pp. 213
–216
.6.
Burmester
, L.
, 1888
, Lehrbuch Der Kinematik
, Leipzig
, Germany
.7.
Krause
, M.
, 1910
, “Zur Theorie der ebenen ähnlich veränderlichen Systeme
,” Jahresber. d. Deutschen Mathematiker-Vereinigung 19, pp. 327–329.8.
Grubler
, M.
, 1917
, Getriebelehre, Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
, Springer-Verlag
, Berlin.9.
Alt
, H.
, 1921
, “Zur Synthese Der Ebenen Mechanismen
,” ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech.
, 1
(5
), pp. 373
–398
.10.
Denavit
, J.
, and Hartenberg, R. S., 1960
, “Approximate Synthesis of Spatial Linkages
,” ASME J. Appl. Mech.
, 27
(1
), pp. 201
–206
.11.
Roth
, B.
, and Freudenstein
, F.
, 1963
, “Synthesis of Path-Generating Mechanisms by Numerical Methods
,” ASME J. Eng. Ind.
, 85
(3
), pp. 298
–304
.12.
McLarnan
, C. W.
, 1968
, “On Linkage Synthesis With Minimum Error
,” J. Mech.
, 3
(2
), pp. 101
–105
.13.
Fox
, R. L.
, and Gupta
, K. C.
, 1973
, “Optimization Technology as Applied to Mechanism Design
,” ASME J. Eng. Ind.
, 95
(2
), pp. 657
–663
.14.
Root
, R. R.
, and Ragsdell
, K. M.
, 1976
, “A Survey of Optimization Methods Applied to the Design of Mechanisms
,” ASME J. Eng. Ind.
, 98
(3
), pp. 1036
–1041
.15.
Erdman
, A. G.
, 1985
, “Computer-Aided Design of Mechanisms: 1984 and Beyond
,” Mech. Mach. Theory
, 20
(4
), pp. 245
–249
.16.
Mariappan
, J.
, and Krishnamurty
, S.
, 1996
, “A Generalized Exact Gradient Method for Mechanism Synthesis
,” Mech. Mach. Theory
, 31
(4
), pp. 413
–421
.17.
Vallejo
, J.
, Avil
, R.
, Hernández
, A.
, and Amezua
, E.
, 1995
, “Nonlinear Optimization of Planar Linkages for Kinematic Syntheses
,” Mech. Mach. Theory
, 30
(4
), pp. 501
–518
.18.
Deshpande
, S.
, and Purwar
, A.
, 2017
, “A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,” ASME J. Mech. Rob.
, 9
(6
), p. 061005
.19.
Venkataraman
, S. C.
, Kinzel
, G. L.
, and Waldron
, K. J.
, 1992
, “Optimal Synthesis of Four-Bar Linkages for Four-Position Rigid-Body Guidance With Selective Tolerance Specifications
,” 22nd Biennial Mechanisms Conference
, Scottsdale, AZ, Sept. 13–16, pp. 651
–659
.20.
Suh
, C. H.
, and Radcliffe
, C. W.
, 1967
, “Synthesis of Plane Linkages With Use of the Displacement Matrix
,” ASME J. Eng. Ind.
, 89
(2
), pp. 206
–214
.21.
Chase
, T. R.
, and Mirth
, J. A.
, 1993
, “Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,” ASME J. Mech. Des.
, 115
(2
), pp. 223
–230
.22.
Filemon
, E.
, 1972
, “Useful Ranges of Centerpoint Curves for Design of Crank-and-Rocker Linkages
,” Mech. Mach. Theory
, 7
(1
), pp. 47
–53
.23.
Kohli
, D.
, Cheng
, J.-C.
, and Tsai
, K.
, 1994
, “Assemblability, Circuits, Branches, Locking Positions, and Rotatability of Input Links of Mechanisms With Four Closures
,” ASME J. Mech. Des.
, 116
(1
), pp. 92
–98
.24.
Bawab
, S.
, Kinzel
, G. L.
, and Waldron
, K. J.
, 1992
, “Rectified Synthesis of Coupler-Driven Four-Bar Mechanisms for Four-Position Motion Generation
,” Am. Soc. Mech. Eng., Des. Eng. Div., 46
, pp. 147
–155
.25.
Cheng
, J.-C.
, and Kohli
, D.
, 1992
, “Synthesis of Mechanics Including Circuit Defects, Branch Defects and Input-Crank Rotatability
,” 22nd Biennial Mechanisms Conference, Scottsdale, AZ, Sept. 13–16, pp. 111
–119
.26.
Mirth
, J. A.
, 1994
, “General Order Criteria for the Precision Position Synthesis of Single Degree-of-Freedom Planar Linkages
,” ASME Design Technical Conference, Mechanism Synthesis and Analysis, DE-Vol. 70, pp. 245
–252
.27.
Ting
, K.-L.
, and Dou
, X.
, 1994
, “Branch, Mobility Criteria, and Classification of RSSR and Other Bimodal Linkages
,” ASME Design Technical Conference, Mechanism Synthesis and Analysis, DE-Vol. 7, pp. 303
–310
.28.
Holte
, J. E.
, and Chase
, T. R.
, 1995
, “Branching and Immovable Configurations
,” ASME Design Engineering Technical Conference, Boston, MA, Sept. 17–20, pp. 861
–866
.29.
Beloiu
, A.
, and Gupta
, K.
, 1997
, “A Unified Approach for the Investigation of Branch and Circuit Defects
,” Mech. Mach. Theory
, 32
(5
), pp. 539
–557
.30.
Gupta
, K.
, and Beloiu
, A.
, 1998
, “Branch and Circuit Defect Elimination in Spherical Four-Bar Linkages
,” Mech. Mach. Theory
, 33
(5
), pp. 491
–504
.31.
Hwang
, W.-M.
, and Chen
, Y.-J.
, 2008
, “Defect-Free Synthesis of Stephenson-Iii Motion Generators
,” Proc. Inst. Mech. Eng., Part C
, 222
(12
), pp. 2485
–2494
.32.
Perkins
, D. A.
, and Murray
, A. P.
, 2011
, “Synthesis of Coupler-Drivers for Four Position Planar Synthesis Tasks
,” ASME
Paper No. DETC2011-48170.33.
Sardashti
, A.
, Daniali
, H.
, and Varedi
, S.
, 2013
, “Optimal Free-Defect Synthesis of Four-Bar Linkage With Joint Clearance Using PSO Algorithm
,” Meccanica
, 48
(7
), pp. 1681
–1693
.34.
Shen
, Q.
, Lee
, W.-T.
, and Russell
, K.
, 2015
, “On Adjustable Planar Four-Bar Motion Generation With Order, Branch and Circuit Defect Rectification
,” ASME J. Mech. Rob.
, 7
(3
), p. 034501.35.
Verotti
, M.
, Dochshanov
, A.
, and Belfiore
, N. P.
, 2017
, “Compliance Synthesis of CSFH MEMS-Based Microgrippers
,” ASME J. Mech. Des.
, 139
(2
), p. 022301
.36.
Bagolini
, A.
, Ronchin
, S.
, Bellutti
, P.
, Chist
, M.
, Verotti
, M.
, and Belfiore
, N. P.
, 2017
, “Fabrication of Novel Mems Microgrippers by Deep Reactive Ion Etching With Metal Hard Mask
,” J. Microelectromech. Syst.
, 26
(4
), pp. 926
–934
.37.
Belfiore
, N.
, Broggiato
, G.
, Verotti
, M.
, Balucani
, M.
, Crescenzi
, R.
, Bagolini
, A.
, Bellutti
, P.
, and Boscardin
, M.
, 2015
, “Simulation and Construction of a MEMS CSFH Based Microgripper
,” Int. J. Mech. Control
, 16
(1
), pp. 21
–30
.https://www.researchgate.net/publication/283532930_Simulation_and_construction_of_a_MEMS_CSFH_based_microgripper38.
Cecchi
, R.
, Verotti
, M.
, Capata
, R.
, Dochshanov
, A.
, Broggiato
, G.
, Crescenzi
, R.
, Balucani
, M.
, Natali
, S.
, Razzano
, G.
, Lucchese
, F.
, Bagolini
, A.
, Bellutti
, P.
, Sciubba
, E.
, and Belfiore
, N.
, 2015
, “Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,” Micromachines
, 6
(11
), pp. 1710
–1728
.39.
Di Giamberardino
, P.
, Bagolini
, A.
, Bellutti
, P.
, Rudas
, I. J.
, Verotti
, M.
, Botta
, F.
, and Belfiore
, N. P.
, 2017
, “New MEMS Tweezers for the Viscoelastic Characterization of Soft Materials at the Microscale
,” Micromachines
, 9
(1
), p. 15
.40.
Pennestrì
, E.
, and Belfiore
, N. P.
, 1995
, “On the Numerical Computation of Generalized Burmester Points
,” Meccanica
, 30
(2
), pp. 147
–153
.41.
Pennestrì
, E.
, and Belfiore
, N. P.
, 1994
, “Modular Third-Order Analysis of Planar Linkages With Applications
,” American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 70
(Pt 1), pp. 99–103.42.
Press
, W. H.
, Teukolsky
, S. A.
, Vetterling
, W. T.
, and Flannery
, B. P.
, 1996
, Numerical Recipes in C
, Vol. 2
, Cambridge University Press
, Cambridge, UK
.43.
Hartenberg
, R. S.
, and Denavit
, J.
, 1964
, Kinematic Synthesis of Linkages
, McGraw-Hill
, New York
.44.
Howell
, L. L.
, Magleby
, S. P.
, and Olsen
, B. M.
, 2013
, Handbook of Compliant Mechanisms
, Wiley
, Chichester, UK.45.
Verotti
, M.
, 2016
, “Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature
,” Mech. Mach. Theory
, 97
, pp. 29
–50
.46.
Verotti
, M.
, 2018
, “Effect of Initial Curvature in Uniform Flexures on Position Accuracy
,” Mech. Mach. Theory
, 119
, pp. 106
–118
.47.
Hopcroft
, M. A.
, Nix
, W. D.
, and Kenny
, T. W.
, 2010
, “What is the Young's Modulus of Silicon?
,” J. Microelectromech. Syst.
, 19
(2
), pp. 229
–238
.48.
Yeh
, J. A.
, Chen
, C.-N.
, and Lui
, Y.-S.
, 2004
, “Large Rotation Actuated by In-Plane Rotary Comb-Drives With Serpentine Spring Suspension
,” J. Micromech. Microeng.
, 15
(1
), p. 201
.49.
Ghosh
, A.
, and Corves
, B.
, 2016
, Introduction to Micromechanisms and Microactuators
, Springer
, New Delhi, India.50.
Petersen
, K. E.
, 1982
, “Silicon as a Mechanical Material
,” Proc. IEEE
, 70
(5
), pp. 420
–457
.Copyright © 2018 by ASME
You do not currently have access to this content.