Abstract

Kinematic reliability of robotic manipulators is the linchpin for restraining the positional errors within acceptable limits. This work develops an efficient reliability analysis method to account for random dimensions and joint angles of robotic mechanisms. It aims to proficiently predict the kinematic reliability of robotic manipulators. The kinematic reliability is defined by the probability that the actual position of an end-effector falls into a specified tolerance sphere, which is centered at the target position. The motion error is indicated by a compound function of independent standard normal variables constructed by three co-dependent coordinates of the end-effector. The saddle point approximation is then applied to compute the kinematic reliability. Exemplification demonstrates satisfactory accuracy and efficiency of the proposed method due to the construction and the saddle point since random simulation is spared.

References

1.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
. 10.1016/j.apm.2009.08.009
2.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
. 10.1115/1.4007150
3.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
. 10.1115/1.4035860
4.
Wang
,
J.
,
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Hybrid Dimension Reduction for Mechanism Reliability Analysis With Random Joint Clearances
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1396
1410
. 10.1016/j.mechmachtheory.2011.05.008
5.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
6.
Meng
,
Z.
,
Zhang
,
D.
,
Liu
,
Z.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121406
. 10.1115/1.4040883
7.
Meng
,
Z.
,
Zhang
,
D.
,
Li
,
G.
, and
Yu
,
B.
,
2019
, “
An Importance Learning Method for Non-Probabilistic Reliability Analysis and Optimization
,”
Struct. Multidiscipl. Optim.
,
59
(
4
), pp.
1255
1271
. 10.1007/s00158-018-2128-7
8.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
. 10.1016/j.mechmachtheory.2008.10.003
9.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
. 10.1115/1.4003539
10.
Bowling
,
A. P.
,
Renaud
,
J. E.
,
Newkirk
,
J. T.
,
Patel
,
N. M.
, and
Agarwal
,
H.
,
2007
, “
Reliability-Based Design Optimization of Robotic System Dynamic Performance
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
449
454
. 10.1115/1.2437804
11.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
An Efficient Method for System Reliability Analysis of Planar Mechanisms
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
2
), pp.
373
386
. 10.1177/0954406212448341
12.
Wang
,
Z.
,
Wang
,
Z.
,
Yu
,
S.
, and
Zhang
,
K.
,
2019
, “
Time-Dependent Mechanism Reliability Analysis Based on Envelope Function and Vine-Copula Function
,”
Mech. Mach. Theory
,
134
(
Apr.
), pp.
667
684
. 10.1016/j.mechmachtheory.2019.01.008
13.
Wang
,
L.
,
Zhang
,
X.
, and
Zhou
,
Y.
,
2018
, “
An Effective Approach for Kinematic Reliability Analysis of Steering Mechanisms
,”
Reliab. Eng. Syst. Safe.
,
180
(
Dec.
), pp.
62
76
. 10.1016/j.ress.2018.07.009
14.
Zhang
,
X.
,
Pandey
,
M. D.
, and
Zhang
,
Y.
,
2014
, “
Computationally Efficient Reliability Analysis of Mechanisms Based on a Multiplicative Dimensional Reduction Method
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061006
. 10.1115/1.4026270
15.
Chen
,
W.
,
Sahai
,
A.
,
Messac
,
A.
, and
Sundararaj
,
G. J.
,
2000
, “
Exploration of the Effectiveness of Physical Programming in Robust Design
,”
ASME J. Mech. Des.
,
122
(
2
), pp.
155
163
. 10.1115/1.533565
16.
Yang
,
C.
, and
Du
,
X.
,
2014
, “
Robust Design for Multivariate Quality Characteristics Using Extreme Value Distribution
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101405
. 10.1115/1.4028016
17.
Du
,
X.
,
2012
, “
Robust Design Optimization With Bivariate Quality Characteristics
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
187
199
. 10.1007/s00158-011-0753-5
18.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
. 10.1115/1.2936898
19.
Liu
,
T.
, and
Wang
,
J.
,
1994
, “
A Reliability Approach to Evaluating Robot Accuracy Performance
,”
Mech. Mach. Theory
,
29
(
1
), pp.
83
94
. 10.1016/0094-114X(94)90022-1
20.
Zhu
,
J.
, and
Ting
,
K.-L.
,
2000
, “
Uncertainty Analysis of Planar and Spatial Robots With Joint Clearances
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1239
1256
. 10.1016/S0094-114X(99)00076-2
21.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
10.1109/TR.2019.2919540
22.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
(
Dec.
), pp.
137
152
. 10.1016/j.mechmachtheory.2012.08.009
23.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
24.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscipl. Optim.
,
51
(
1
), pp.
1
21
. 10.1007/s00158-014-1132-9
25.
Meng
,
Z.
,
Li
,
G.
,
Yang
,
D.
, and
Zhan
,
L.
,
2017
, “
A New Directional Stability Transformation Method of Chaos Control for First Order Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
55
(
2
), pp.
601
612
. 10.1007/s00158-016-1525-z
26.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
366
. 10.1061/(ASCE)0733-9399(1984)110:3(357)
27.
Huang
,
B.
, and
Du
,
X.
,
2005
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
. 10.1115/1.2118667
28.
Du
,
X.
,
2008
, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011011
. 10.1115/1.2717225
29.
Denhavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
(
2
), pp.
215
221
.
30.
Goutis
,
C.
, and
Casella
,
G.
,
1999
, “
Explaining the Saddlepoint Approximation
,”
Am. Stat.
,
53
(
3
), pp.
216
224
. 10.1080/00031305.1999.10474463
31.
Liu
,
J.
,
Meng
,
X.
,
Xu
,
C.
,
Zhang
,
D.
, and
Jiang
,
C.
,
2018
, “
Forward and Inverse Structural Uncertainty Propagations Under Stochastic Variables With Arbitrary Probability Distributions
,”
Comput. Methods Appl. Mech. Eng.
,
342
(
Dec.
), pp.
287
320
. 10.1016/j.cma.2018.07.035
32.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
A Robust Design Method Using Variable Transformation and Gauss–Hermite Integration
,”
Int. J. Numer. Meth. Eng.
,
66
(
12
), pp.
1841
1858
. 10.1002/nme.1577
You do not currently have access to this content.