Abstract

This paper presents a novel tensegrity structure derived from the tensegrity triplex (also called the simplex or regular triangular prism) by using the linkage-truss transformation. In this paper, the tensegrity triplex is first transformed into a 6R linkage with vertical members as revolute joints and is coined the triplex linkage. With this, a novel 6R linkage was derived, whose joint axes are perpendicular to the joint axes of the triplex linkage and is coined the ortho-triplex linkage. Rigidity analysis based on screw theory demonstrates that both obtained linkages with infinitesimal mobility are prestress stable. Finally, transforming the ortho-triplex linkage to a truss, by using cables for tensional members and struts for compressional members, leads to a novel tensegrity that is coined ortho-triplex tensegrity. A non-dimensional quadratic form is further provided to analyze the sensitivity of prestress-stability in terms of the structural parameters. The process of derivation of this novel tensegrity presents a new way of designing tensegrity structures with prestress-stability analysis based on screw theory.

References

1.
Calladine
,
C. R.
,
1978
, “
Buckminster Fuller’s “Tensegrity” Structures and Clerk Maxwell’s Rules for the Construction of Stiff Frames
,”
Int. J. Solids Struct.
,
14
(
2
), pp.
161
172
. 10.1016/0020-7683(78)90052-5
2.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
. 10.1016/0020-7683(86)90014-4
3.
Sumi
,
S.
,
Böhm
,
V.
, and
Zimmermann
,
K.
,
2017
, “
A Multistable Tensegrity Structure With a Gripper Application
,”
Mech. Mach. Theory
,
114
, pp.
204
217
. 10.1016/j.mechmachtheory.2017.04.005
4.
Caluwaerts
,
K.
,
Despraz
,
J.
,
Işçen
,
A.
,
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Schrauwen
,
B.
, and
SunSpiral
,
V.
,
2014
, “
Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation
,”
J. R. Soc. Interface
,
11
(
98
), p.
20140520
. 10.1098/rsif.2014.0520
5.
Vasquez
,
R. E.
,
Crane
,
C. D.
, and
Correa
,
J. C.
,
2014
, “
Analysis of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting
,”
J. Mech. Robot.
,
6
(
3
), p.
3
. 10.1115/1.4027703
6.
Fraternali
,
F.
,
Carpentieri
,
G.
,
Amendola
,
A.
,
Skelton
,
R. E.
, and
Nesterenko
,
V. F.
,
2014
, “
Multiscale Tunability of Solitary Wave Dynamics in Tensegrity Metamaterials
,”
Appl. Phys. Lett.
,
105
(
20
), p.
201903
. 10.1063/1.4902071
7.
Ingber
,
D. E.
,
Wang
,
N.
, and
Stamenović
,
D.
,
2014
, “
Tensegrity, Cellular Biophysics, and the Mechanics of Living Systems
,”
Rep. Prog. Phys.
,
77
(
4
), p.
046603
. 10.1088/0034-4885/77/4/046603
8.
Tibert
,
A.
, and
Pellegrino
,
S.
,
2003
, “
Review of Form-Finding Methods for Tensegrity Structures
,”
Int. J. Space Struct.
,
18
(
4
), pp.
209
223
. 10.1260/026635103322987940
9.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2015
,
Tensegrity Structures: Form, Stability, and Symmetry
,
Springer
,
Japan
.
10.
Connelly
,
R.
, and
Whiteley
,
W.
,
1996
, “
Second-Order Rigidity and Prestress Stability for Tensegrity Frameworks
,”
SIAM J. Discrete Math.
,
9
(
3
), pp.
453
491
. 10.1137/S0895480192229236
11.
Calladine
,
C. R.
, and
Pellegrino
,
S.
,
1991
, “
First-order Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
,
27
(
4
), pp.
505
515
. 10.1016/0020-7683(91)90137-5
12.
Connelly
,
R.
, and
Back
,
A.
,
1998
, “
Mathematics and Tensegrity
,”
Am. Sci.
,
86
(
2
), pp.
142
151
. 10.1511/1998.2.142
13.
Wohlhart
,
K.
,
1999
, “
Degrees of Shakiness
,”
Mech. Mach. Theory
,
34
(
7
), pp.
1103
1126
. 10.1016/S0094-114X(98)00027-5
14.
Wohlhart
,
K.
,
2010
, “
From Higher Degrees of Shakiness to Mobility
,”
Mech. Mach. Theory
,
45
(
3
), pp.
467
476
. 10.1016/j.mechmachtheory.2009.10.006
15.
Connelly
,
R.
,
1980
, “
The Rigidity of Certain Cabled Frameworks and the Second-Order Rigidity of Arbitrarily Triangulated Convex Surfaces
,”
Adv. Math.
,
37
(
3
), pp.
272
299
. 10.1016/0001-8708(80)90037-7
16.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages—Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Robot.
,
8
(
4
), p.
041013
. 10.1115/1.4032778
17.
Wu
,
L.
,
Müller
,
A.
, and
Dai
,
J. S.
,
2018
, “
Matrix Analysis of Second-Order Kinematic Constraints of Single-Loop Linkages With Screw Coordinates
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec
.
18.
Wu
,
L.
,
Müller
,
A.
, and
Dai
,
J. S.
,
2020
, “
A Matrix Method to Determine Infinitesimally Mobile Linkages With Only First-Order Infinitesimal Mobility
,”
Mech. Mach. Theory
,
148
, p.
103776
. 10.1016/j.mechmachtheory.2019.103776
19.
Yang
,
F.
,
Chen
,
Y.
,
Kang
,
R.
, and
Ma
,
J.
,
2016
, “
Truss Transformation Method to Obtain the Non-Overconstrained Forms of 3D Overconstrained Linkages
,”
Mech. Mach. Theory
,
102
, pp.
149
166
. 10.1016/j.mechmachtheory.2016.04.005
20.
Motro
,
R.
,
2003
,
Tensegrity: Structural Systems for the Future
,
Kogan Page Science
,
London
.
21.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton
.
22.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics, Chinese Translations
,
Higher Education Press
,
Beijing
.
23.
Wohlhart
,
K.
,
2002
, “Mises Derivatives of Motors and Motor Tensors,”
Romansy 14—Theory and Practice of Robots and Manipulators
,
G.
Bianchi
,
J. C.
Guinot
, and
C.
Rzymkowski
, eds.,
Springer
,
Vienna
, pp.
87
98
.
24.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
. 10.1016/j.mechmachtheory.2014.01.007
25.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Null-Space Construction Using Cofactors From a Screw-Algebra Context
,”
Proc. R. Soc. London, Ser. A
,
458
(
2024
), pp.
1845
1866
. 10.1098/rspa.2001.0949
26.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
27.
Motro
,
R.
,
2011
, “
Structural Morphology of Tensegrity Systems
,”
Meccanica
,
46
(
1
), pp.
27
40
. 10.1007/s11012-010-9379-8
28.
Schek
,
H. J.
,
1974
, “
The Force Density Method for Form Finding and Computation of General Networks
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
1
), pp.
115
134
. 10.1016/0045-7825(74)90045-0
29.
Oliveira
,
M. C.
, and
Skelton
,
R. E.
,
2009
,
Tensegrity Systems
,
Springer
,
New York
.
You do not currently have access to this content.