Abstract

The present research develops a new shadow filter and presents its usage for structural topology optimization (TO) considering the molding manufacturability. It is important to consider manufacturing methods in designing products. Some geometrical features not allowing molded parts should be removed. In addition, it has been an important issue to efficiently impose these manufacturing constraints in TO. For this purpose, the present research emulates implementation of shadowing of products and applies the shadow images as pseudo-density variables in TO. The use of this shadow density filter ensures that the optimized layouts comply with the conditions of the manufacturing constraints. Various manufacturing conditions can be imposed depending on the direction and the position of the light. Several numerical examples of compliance minimization problem, conjugate heat transfer problem, and fluid–structure interaction problem are solved to demonstrate the validity and effectiveness of the present shadow density filters, and their performances are compared.

References

1.
Li
,
Q.
,
Chen
,
W.
,
Liu
,
S.
, and
Tong
,
L.
,
2016
, “
Structural Topology Optimization Considering Connectivity Constraint
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
971
984
. 10.1007/s00158-016-1459-5
2.
Sato
,
Y.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2017
, “
Manufacturability Evaluation for Molded Parts Using Fictitious Physical Models, and its Application in Topology Optimization
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
1391
1409
. 10.1007/s00170-017-0218-0
3.
Gersborg
,
A. R.
, and
Andreasen
,
C. S.
,
2011
, “
An Explicit Parameterization for Casting Constraints in Gradient Driven Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
44
(
6
), pp.
875
881
. 10.1007/s00158-011-0632-0
4.
Berrocal
,
L.
,
Fernández
,
R.
,
González
,
S.
,
Periñán
,
A.
,
Tudela
,
S.
,
Vilanova
,
J.
,
Rubio
,
L.
,
Martín Márquez
,
J. M.
,
Guerrero
,
J.
, and
Lasagni
,
F.
,
2019
, “
Topology Optimization and Additive Manufacturing for Aerospace Components
,”
Prog. Addit. Manuf.
,
4
(
2
), pp.
83
95
. 10.1007/s40964-018-0061-3
5.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2001
,
Product Design for Manufacture and Assembly, Revised and Expanded
,
CRC Press
,
Boca Raton, FL
.
6.
Hoque
,
A.
,
Halder
,
P.
,
Parvez
,
M.
,
Szecsi
,
T. J. C.
, and
Engineering
,
I.
,
2013
, “
Integrated Manufacturing Features and Design-for-Manufacture Guidelines for Reducing Product Cost Under CAD/CAM Environment
,”
Comput. Ind. Eng.
,
66
(
4
), pp.
988
1003
. 10.1016/j.cie.2013.08.016
7.
James
,
B. D.
,
Spisak
,
A. B.
, and
Colella
,
W. G.
,
2014
, “
Design for Manufacturing and Assembly Cost Estimate Methodology for Transportation Fuel Cell Systems
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
024503
. 10.1115/1.4025624
8.
Selvaraj
,
P.
,
Radhakrishnan
,
P.
, and
Adithan
,
M.
,
2009
, “
An Integrated Approach to Design for Manufacturing and Assembly Based on Reduction of Product Development Time and Cost
,”
Int. J. Adv. Manuf. Technol.
,
42
(
1–2
), pp.
13
29
. 10.1007/s00170-008-1580-8
9.
Salonitis
,
K.
,
2016
, “
Design for Additive Manufacturing Based on the Axiomatic Design Method
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
989
996
. 10.1007/s00170-016-8540-5
10.
Zhou
,
M.
,
Fleury
,
R.
,
Shyy
,
Y.-K.
,
Thomas
,
H.
, and
Brennan
,
J.
, “
Progress in Topology Optimization with Manufacturing Constraints
,”
Proc. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, p.
5614
.
11.
Zhou
,
M. D.
,
Lazarov
,
B. S.
,
Wang
,
F. W.
, and
Sigmund
,
O.
,
2015
, “
Minimum Length Scale in Topology Optimization by Geometric Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
266
282
. 10.1016/j.cma.2015.05.003
12.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
. 10.1016/j.advengsoft.2016.07.017
13.
Langelaar
,
M.
,
2019
, “
Topology Optimization for Multi-Axis Machining
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
226
252
. 10.1016/j.cma.2019.03.037
14.
Vatanabe
,
S. L.
,
Lippi
,
T. N.
,
Lima
,
C. R. d.
,
Paulino
,
G. H.
, and
Silva
,
E. C. N.
,
2016
, “
Topology Optimization with Manufacturing Constraints: A Unified Projection-Based Approach
,”
Adv. Eng. Softw.
,
100
, pp.
97
112
. 10.1016/j.advengsoft.2016.07.002
15.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
. 10.1007/s12206-010-0328-1
16.
Otomori
,
M.
,
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Andkjær
,
J.
,
2012
, “
A Topology Optimization Method Based on the Level set Method for the Design of Negative Permeability Dielectric Metamaterials
,”
Comput. Methods Appl. Mech. Eng.
,
237–240
, pp.
192
211
. 10.1016/j.cma.2012.04.022
17.
Yoon
,
G. H.
,
2012
, “
Topological Layout Design of Electro-Fluid-Thermal-Compliant Actuator
,”
Comput. Methods Appl. Mech. Eng.
,
209–211
, pp.
28
44
. 10.1016/j.cma.2011.11.005
18.
Noguchi
,
Y.
,
Yamada
,
T.
,
Otomori
,
M.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2015
, “
An Acoustic Metasurface Design for Wave Motion Conversion of Longitudinal Waves to Transverse Waves Using Topology Optimization
,”
Appl. Phys. Lett.
,
107
(
22
), p.
221909
. 10.1063/1.4936997
19.
Zhang
,
W.
,
Li
,
D.
,
Zhou
,
J.
,
Du
,
Z.
,
Li
,
B.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
381
413
. 10.1016/j.cma.2018.01.050
20.
Zhang
,
W.
,
Liu
,
Y.
,
Du
,
Z.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Component Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111404
. 10.1115/1.4041052
21.
Kim
,
Y. Y.
, and
Yoon
,
G. H.
,
2000
, “
Multi-resolution Multi-Scale Topology Optimization—a new Paradigm
,”
Int. J. Solids Struct.
,
37
(
39
), pp.
5529
5559
. 10.1016/S0020-7683(99)00251-6
22.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
,
2003
, “
The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization
,”
KSME Int. J.
,
17
(
10
), pp.
1496
1506
. 10.1007/BF02982329
23.
Guest
,
J. K.
, and
Zhu
,
M.
, “
Casting and Milling Restrictions in Topology Optimization via Projection-Based Algorithms
,”
Proc. ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
913
920
.
24.
Yoon
,
G.
,
Kim
,
Y.
,
Bendsoe
,
M.
, and
Sigmund
,
O.
,
2004
, “
Hinge-free Topology Optimization with Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscipl. Optim.
,
27
(
3
), pp.
139
150
. 10.1007/s00158-004-0378-z
25.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2016
, “
Thickness Control in Structural Optimization via a Level Set Method
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1349
1382
. 10.1007/s00158-016-1453-y
26.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
60
70
.
27.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1157
1172
.
28.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
, “
Topology Optimization for Additive Manufacturing
,”
Proc. Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
348
362
.
29.
Xia
,
Q.
,
Shi
,
T. L.
,
Wang
,
M. Y.
, and
Liu
,
S. Y.
,
2010
, “
A Level set Based Method for the Optimization of Cast Part
,”
Struct. Multidiscipl. Optim.
,
41
(
5
), pp.
735
747
.
30.
Qian
,
X. P.
,
2017
, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach
,”
Int. J. Numer. Meth. Eng.
,
111
(
3
), pp.
247
272
. 10.1002/nme.5461
31.
Allaire
,
G.
,
Jouve
,
F.
, and
Michailidis
,
G.
,
2016
, “Molding Direction Constraints in Structural Optimization Via a Level-Set Method,”
Variational Analysis and Aerospace Engineering
,
A.
Frediani
,
B.
Mohammadi
,
O.
Pironneau
, and
V.
Cipolla
, eds.,
Springer
,
New York
, pp.
1
39
.
32.
Guest
,
J. K.
,
Prevost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Meth. Eng.
,
61
(
2
), pp.
238
254
. 10.1002/nme.1064
33.
Dienemann
,
R.
,
Schumacher
,
A.
, and
Fiebig
,
S.
, “
Topology Optimization Considering the Requirements of Deep-Drawn Sheet Metals
,”
Proc. Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization
,
Sydney, Australia
.
34.
Chen
,
S.
,
Wang
,
M. Y.
, and
Liu
,
A. Q.
,
2008
, “
Shape Feature Control in Structural Topology Optimization
,”
Comput.-Aided Des.
,
40
(
9
), pp.
951
962
. 10.1016/j.cad.2008.07.004
35.
Yoon
,
G. H.
,
2010
, “
Topology Optimization for Stationary Fluid-Structure Interaction Problems Using a new Monolithic Formulation
,”
Int. J. Numer. Meth. Eng.
,
82
(
5
), pp.
591
616
. 10.1002/nme.2777
36.
Joshi
,
D.
, and
Ravi
,
B.
,
2010
, “
Early Castability Evaluation Using Analytical Hierarchy Process
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1–4
), pp.
21
36
. 10.1007/s00170-010-2517-6
37.
Armillotta
,
A.
,
Fasoli
,
S.
, and
Guarinoni
,
A.
,
2016
, “
Cold Flow Defects in Zinc die Casting: Prevention Criteria Using Simulation and Experimental Investigations
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
605
622
. 10.1007/s00170-015-7959-4
38.
Liu
,
S.-G.
,
Jin
,
Q.
,
Wang
,
P.
, and
Xie
,
R.-J.
,
2014
, “
Closed-form Solutions for Multi-Objective Tolerance Optimization
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
1859
1866
. 10.1007/s00170-013-5437-4
You do not currently have access to this content.