Abstract

The field of aerial robotics has advanced rapidly, but the design knowledge has not yet been codified into reusable design guidelines. Design guidelines have been developed for many mechanical design areas to advance the field itself and help novice designers benefit from past expert knowledge more easily. We used an inductive approach and collected 90 aerial robot examples by reviewing recent work in aerial robotics and studying the key motivations, features, functionalities, and potential design contradictions. Then, design guidelines are derived by identifying patterns and grouping them by the problem they solve and the innovation made to solve it iteratively. From this, we find 35 unique design examples that can be grouped into either 14 design guidelines for more sensing, battery, mission, or actuation efficiency; or to improve the desired functionality in an aerial robot such as reducing complexity or improving how the robot can interact with objects or its environment. The derived guidelines are validated for thematic saturation using convergence analysis and its utility through a qualitative design study involving novices and experienced designers working on two design problems. The design guidelines presented in this research can support the design of future innovative aerial robots.

References

1.
Liew
,
C. F.
,
DeLatte
,
D.
,
Takeishi
,
N.
, and
Yairi
,
T.
,
2017
, “
Recent Developments in Aerial Robotics: A Survey and Prototypes Overview
,” https://arxiv.org/abs/1711.10085
2.
Clemente
,
V.
,
Tschimmel
,
K.
, and
Pombo
,
F.
,
2020
, “Mapping the Territories Around Design Research: A Four-Layer Analysis,”
Research & Education in Design: People & Processes & Products & Philosophy
, 1st ed.,
R.
Almendra
, and
J.
Ferreira
, eds.,
CRC Press
,
Lisbon, Portugal
, pp.
147
156
.
3.
McMahon
,
C. A.
,
2012
, “
Reflections on Diversity in Design Research
,”
J. Eng. Des.
,
23
(
8
), pp.
563
576
.
4.
Fu
,
K.
,
Yang
,
M.
, and
Wood
,
K.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
5.
Perez
,
K. B.
,
Anderson
,
D. S.
, and
Wood
,
K. L.
,
2015
, “
Crowdsourced Design Principles for Leveraging the Capabilities of Additive Manufacturing
,”
International Conference of Engineering Design
,
Milan, Italy
,
July 27–30
, pp.
1
10
.
6.
Rosen
,
D. W.
,
2014
, “
Research Supporting Principles for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
9
(
4
), pp.
225
232
.
7.
Bao
,
M.
,
2005
,
Analysis and Design Principles of MEMS Devices
,
Elsevier
,
Amsterdam, The Netherlands
.
8.
Surma-aho
,
A.
,
Hölttä-Otto
,
K.
,
Nelskylä
,
K.
, and
Lindfors
,
N.
,
2021
, “
Usability Issues in the Operating Room – Towards Contextual Design Guidelines for Medical Device Design
,”
Appl. Ergon.
,
90
, p.
103221
.
9.
Story
,
M. F.
,
1998
, “
Maximizing Usability: The Principles of Universal Design
,”
Assist. Technol.
,
10
(
1
), pp.
4
12
.
10.
Hermawati
,
S.
, and
Lawson
,
G.
,
2016
, “
Establishing Usability Heuristics for Heuristics Evaluation in a Specific Domain: Is there a Consensus?
Appl. Ergon.
,
56
, pp.
34
51
.
11.
Horvath
,
I.
,
2004
, “
A Treatise on Order in Engineering Design Research
,”
Res. Eng. Des.
,
15
(
3
), pp.
155
181
.
12.
Simon
,
H. A.
,
2019
,
The Sciences of the Artificial, Reissue of the Third Edition With a New Introduction by John Laird
,
MIT Press
,
Cambridge, MA
.
13.
Yilmaz
,
S.
,
Daly
,
S. R.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2016
, “
Evidence-Based Design Heuristics for Idea Generation
,”
Des. Stud.
,
46
, pp.
95
124
.
14.
Altshuller
,
G. S.
,
1984
,
Creativity As an Exact Science: The Theory of the Solution of Inventive Problems
,
Gordon and Breach
,
Amsterdam, The Netherlands
.
15.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
16.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
17.
Seifert
,
C. M.
,
Gonzalez
,
R.
,
Yilmaz
,
S.
, and
Daly
,
S.
,
2015
, “Boosting Creativity in Idea Generation Using Design Heuristics,”
Design Thinking: New Product Development Essentials from the PDMA
,
M. G.
Luchs
,
K. S.
Swan
, and
A.
Griffin
, eds.,
Wiley-Blackwell
,
Hoboken, NJ
, pp.
71
86
.
18.
Perez
,
B.
,
Hilburn
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2019
, “
Design Principle-Based Stimuli for Improving Creativity During Ideation
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
233
(
2
), pp.
493
503
.
19.
Kumar
,
V.
, and
Michael
,
N.
,
2017
, “Opportunities and Challenges with Autonomous Micro Aerial Vehicles,”
Robotics Research
, Vol.
100
,
H. I.
Christensen
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham
, pp.
41
58
.
20.
Liew
,
C. F.
, and
Yairi
,
T.
,
2020
, “
Companion Unmanned Aerial Vehicles: A Survey
,” https://arxiv.org/abs/2001.04637
21.
Yilmaz
,
S.
,
Seifert
,
C.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
Design Heuristics in Innovative Products
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071102
.
22.
Meiri
,
N.
, and
Zarrouk
,
D.
,
2019
, “
Flying Star, a Hybrid Crawling and Flying Sprawl Tuned Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
5302
5308
.
23.
Salaan
,
C. J.
,
Tadakuma
,
K.
,
Okada
,
Y.
,
Sakai
,
Y.
,
Ohno
,
K.
, and
Tadokoro
,
S.
,
2019
, “
Development and Experimental Validation of Aerial Vehicle With Passive Rotating Shell on Each Rotor
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2568
2575
.
24.
Tan
,
Y. H.
, and
Chen
,
B. M.
,
2020
, “
A Morphable Aerial-Aquatic Quadrotor With Coupled Symmetric Thrust Vectoring
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
2223
2229
.
25.
Bucki
,
N.
, and
Mueller
,
M. W.
,
2019
, “
Design and Control of a Passively Morphing Quadcopter
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
9116
9122
.
26.
Chiappinelli
,
R.
,
Cohen
,
M.
,
Doff-Sotta
,
M.
,
Nahon
,
M.
,
Forbes
,
J. R.
, and
Apkarian
,
J.
,
2019
, “
Modeling and Control of a Passively-Coupled Tilt-Rotor Vertical Takeoff and Landing Aircraft
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
4141
4147
.
27.
Yang
,
H.
,
Park
,
S.
,
Lee
,
J.
,
Ahn
,
J.
,
Son
,
D.
, and
Lee
,
D.
,
2018
, “
Lasdra: Large-Size Aerial Skeleton System With Distributed Rotor Actuation
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
7017
7023
.
28.
Falanga
,
D.
,
Kleber
,
K.
,
Mintchev
,
S.
,
Floreano
,
D.
, and
Scaramuzza
,
D.
,
2019
, “
The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
209
216
.
29.
Zhao
,
M.
,
Kawasaki
,
K.
,
Chen
,
X.
,
Noda
,
S.
,
Okada
,
K.
, and
Inaba
,
M.
,
2017
, “
Whole-Body Aerial Manipulation by Transformable Multirotor With Two-Dimensional Multilinks
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
5175
5182
.
30.
Zheng
,
P.
,
Tan
,
X.
,
Kocer
,
B. B.
,
Yang
,
E.
, and
Kovac
,
M.
,
2020
, “
Tiltdrone: A Fully-Actuated Tilting Quadrotor Platform
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
6845
6852
.
31.
Cotsakis
,
R.
,
St-Onge
,
D.
, and
Beltrame
,
G.
,
2019
, “
Decentralized Collaborative Transport of Fabrics Using Micro-UAVs
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
7734
7740
.
32.
Saldaña
,
D.
,
Gabrich
,
B.
,
Li
,
G.
,
Yim
,
M.
, and
Kumar
,
V.
,
2018
, “
Modquad: The Flying Modular Structure That Self-Assembles in Midair
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
691
698
.
33.
Mulgaonkar
,
Y.
,
Makineni
,
A.
,
Guerrero-Bonilla
,
L.
, and
Kumar
,
V.
,
2018
, “
Robust Aerial Robot Swarms Without Collision Avoidance
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
596
603
.
34.
Debruyn
,
D.
,
Zufferey
,
R.
,
Armanini
,
S. F.
,
Winston
,
C.
,
Farinha
,
A.
,
Jin
,
Y.
, and
Kovac
,
M.
,
2020
, “
MEDUSA: A Multi-Environment Dual-Robot for Underwater Sample Acquisition
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4564
4571
.
35.
Bian
,
J.
,
Hui
,
X.
,
Zhao
,
X.
, and
Tan
,
M.
,
2019
, “
A Novel Development of Robots With Cooperative Strategy for Long-Term and Close-Proximity Autonomous Transmission-Line Inspection
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
1898
1904
.
36.
Jain
,
K. P.
, and
Mueller
,
M. W.
,
2020
, “
Flying Batteries: In-Flight Battery Switching to Increase Multirotor Flight Time
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
3510
3516
.
37.
Lu
,
D.
,
Xiong
,
C.
,
Zeng
,
Z.
, and
Lian
,
L.
,
2019
, “
A Multimodal Aerial Underwater Vehicle With Extended Endurance and Capabilities
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
4674
4680
.
38.
D’Sa
,
R.
, and
Papanikolopoulos
,
N.
,
2019
, “
Design and Experiments for Multi-Section-Transformable (MIST)-UAV
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
1878
1883
.
39.
Brescianini
,
D.
, and
D’Andrea
,
R.
,
2016
, “
Design, Modeling and Control of an Omni-Directional Aerial Vehicle
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3261
3266
.
40.
Bucki
,
N.
, and
Mueller
,
M. W.
,
2018
, “
Improved Quadcopter Disturbance Rejection Using Added Angular Momentum
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
4164
4170
.
41.
McArthur
,
D. R.
,
Chowdhury
,
A. B.
, and
Cappelleri
,
D. J.
,
2018
, “
Autonomous Control of the Interacting-Boomcopter UAV for Remote Sensor Mounting
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
5219
5224
.
42.
Thomas
,
J.
,
Pope
,
M.
,
Loianno
,
G.
,
Hawkes
,
E. W.
,
Estrada
,
M. A.
,
Jiang
,
H.
,
Cutkosky
,
M. R.
, and
Kumar
,
V.
,
2016
, “
Aggressive Flight With Quadrotors for Perching on Inclined Surfaces
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051007
.
43.
Liu
,
Y.
,
Chen
,
H.
,
Zhenmin
,
T.
, and
Sun
,
G.
,
2012
, “
A Bat-Like Switched Flying and Adhesive Robot
,”
2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)
,
Bangkok, Thailand
,
May 27–31
, pp.
92
97
.
44.
Yanagimura
,
K.
,
Ohno
,
K.
,
Okada
,
Y.
,
Takeuchi
,
E.
, and
Tadokoro
,
S.
,
2014
, “
Hovering of MAV by Using Magnetic Adhesion and Winch Mechanisms
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
6250
6257
.
45.
Zhang
,
K.
,
Chermprayong
,
P.
,
Alhinai
,
T. M.
,
Siddall
,
R.
, and
Kovac
,
M.
,
2017
, “
SpiderMAV: Perching and Stabilizing Micro Aerial Vehicles With Bio-Inspired Tensile Anchoring Systems
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
6849
6854
.
46.
Chang
,
W.
,
Yang
,
G.
,
Yu
,
J.
,
Liang
,
Z.
,
Cheng
,
L.
, and
Zhou
,
C.
,
2017
, “
Development of a Power Line Inspection Robot With Hybrid Operation Modes
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
973
978
.
47.
Mulgaonkar
,
Y.
,
Liu
,
W.
,
Thakur
,
D.
,
Daniilidis
,
K.
,
Taylor
,
C. J.
, and
Kumar
,
V.
,
2020
, “
The Tiercel: A Novel Autonomous Micro Aerial Vehicle That Can Map the Environment by Flying Into Obstacles
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
7448
7454
.
48.
Wu
,
X.
, and
Mueller
,
M. W.
,
2020
, “
Using Multiple Short Hops for Multicopter Navigation With Only Inertial Sensors
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
8559
8565
.
49.
Mohta
,
K.
,
Sun
,
K.
,
Liu
,
S.
,
Watterson
,
M.
,
Pfrommer
,
B.
,
Svacha
,
J.
,
Mulgaonkar
,
Y.
,
Taylor
,
C. J.
, and
Kumar
,
V.
,
2018
, “
Experiments in Fast, Autonomous, GPS-Denied Quadrotor Flight
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Madrid, Spain
,
Oct. 1–5
, pp.
7832
7839
.
50.
Tu
,
Z.
,
Fei
,
F.
,
Zhang
,
J.
, and
Deng
,
X.
,
2019
, “
Acting is Seeing: Navigating Tight Space Using Flapping Wings
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
95
101
.
51.
Nguyen
,
T.-M.
,
Nguyen
,
T. H.
,
Cao
,
M.
,
Qiu
,
Z.
, and
Xie
,
L.
,
2019
, “
Integrated UWB-Vision Approach for Autonomous Docking of UAVs in GPS-Denied Environments
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
9603
9609
.
52.
Karrer
,
M.
,
Agarwal
,
M.
,
Kamel
,
M.
,
Siegwart
,
R.
, and
Chli
,
M.
,
2018
, “
Collaborative 6DoF Relative Pose Estimation for Two UAVs With Overlapping Fields of View
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
6688
6693
.
53.
Kenmogne
,
I.-F.
,
Drevelle
,
V.
, and
Marchand
,
E.
,
2018
, “
Interval-Based Cooperative UAVs Pose Domain Characterization From Images and Ranges
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
6349
6356
.
54.
Tan
,
C. H.
,
Shaiful
,
D. S. b.
,
Ang
,
W. J.
,
Win
,
S. K. H.
, and
Foong
,
S.
,
2019
, “
Design Optimization of Sparse Sensing Array for Extended Aerial Robot Navigation in Deep Hazardous Tunnels
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
862
869
.
55.
Mantelli
,
M.
,
Pittol
,
D.
,
Neuland
,
R.
,
Ribacki
,
A.
,
Maffei
,
R.
,
Jorge
,
V.
,
Prestes
,
E.
, and
Kolberg
,
M.
,
2019
, “
A Novel Measurement Model Based on Abbrief for Global Localization of a UAV Over Satellite Images
,”
Rob. Auton. Syst.
,
112
, pp.
304
319
.
56.
Qi
,
Y.
,
Jiang
,
J.
,
Wu
,
J.
,
Wang
,
J.
,
Wang
,
C.
, and
Shan
,
J.
,
2019
, “
Autonomous Landing Solution of Low-Cost Quadrotor on a Moving Platform
,”
Rob. Auton. Syst.
,
119
, pp.
64
76
.
57.
Dressel
,
L.
, and
Kochenderfer
,
M. J.
,
2019
, “
Hunting Drones With Other Drones: Tracking a Moving Radio Target
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
1905
1912
.
58.
Khattak
,
S.
,
Papachristos
,
C.
, and
Alexis
,
K.
,
2020
, “
Keyframe-Based Thermal–Inertial Odometry
,”
J. Field Rob.
,
37
(
4
), pp.
552
579
.
59.
Strauss
,
M.
,
Mordel
,
P.
,
Miguet
,
V.
, and
Deleforge
,
A.
,
2018
, “
DREGON: Dataset and Methods for UAV-Embedded Sound Source Localization
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
1
8
.
60.
Oxman
,
R.
,
1990
, “
Prior Knowledge in Design: A Dynamic Knowledge-Based Model of Design and Creativity
,”
Des. Stud.
,
11
(
1
), pp.
17
28
.
61.
Schunn
,
C. D.
,
McGregor
,
M. U.
, and
Saner
,
L. D.
,
2005
, “
Expertise in Ill-Defined Problem-Solving Domains As Effective Strategy Use
,”
Memory Cognit.
,
33
(
8
), pp.
1377
1387
.
62.
Persky
,
A. M.
, and
Robinson
,
J. D.
,
2017
, “
Moving From Novice to Expertise and Its Implications for Instruction
,”
Am. J. Pharmaceut. Educ.
,
81
(
9
), pp.
72
80
.
63.
Patel
,
A.
,
Summers
,
J. D.
, and
Karmakar
,
S.
,
2021
, “
Influence of Different Representation of Requirements on Idea Generation: An Experimental Study
,”
33rd International Conference on Design Theory and Methodology (DTM) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
6
, Paper No. V006T06A031.
You do not currently have access to this content.