Abstract

Classical dynamic balancing techniques do not consider the linkage elastic behavior. For mechanism or robot design purpose, taking into account the flexibility of the multibody system is of utmost importance, in order to be able to manufacture a mechanism/robot which is stiff enough for a given task. This paper deals with a novel approach that allows to design mechanisms by means of structural topology optimization while specific dynamic balancing conditions are considered. In our work, the links are treated as three-dimensional flexible bodies, and the optimization process is performed for all the bodies simultaneously. Applying this methodology, the optimal design of a dynamically balanced four-bar linkage is accomplished while its compliance is minimized. Numerical validations of the optimized linkage properties are carried out using commercial software. The dynamic balancing performance of the optimized four-bar linkage is numerically validated using adams. Besides, ansys software was used in order to perform the linkage stiffness analysis and to compare it with the results of the optimization solver. In order to verify the feasibility of the proposed methodology, a prototype is built. Experimental studies are carried out in order to evaluate its dynamic balancing performance.

References

1.
Lowen
,
G. G.
, and
Berkof
,
R. S.
,
1968
, “
Survey of Investigations Into the Balancing of Linkages
,”
J. Mech.
,
3
(
4
), pp.
221
231
.
2.
Crossley
,
F. R. E.
,
1954
,
Dynamics in Machines
,
Roland Press
,
New York
.
3.
Berkof
,
R. S.
, and
Lowen
,
G. G.
,
1969
, “
A New Method for Completely Force Balancing Simple Linkages
,”
J. Eng. Ind.
,
91
(
1
), pp.
21
26
.
4.
Berestov
,
L. V.
,
1977
, “
Comparative Analysis of the Reactions in the Kinematic Pairs of the Four-Bar Linkages for the Different Balancing Methods
,”
Russ. J. “Mekhanika Machin”
,
139
, pp.
61
70
.
5.
Kochev
,
I. S.
,
2000
, “
General Theory of Complete Shaking Moment Balancing of Planar Linkages: A Critical Review
,”
Mech. Mach. Theory
,
35
(
11
), pp.
1501
1514
.
6.
Arakelian
,
V. H.
, and
Smith
,
M. R.
,
2008
, “
Design of Planar 3-DOF 3-RRR Reactionless Parallel Manipulators
,”
Mechatronics
,
18
(
10
), pp.
601
606
.
7.
van der Wijk
,
V.
,
Demeulenaere
,
B.
,
Gosselin
,
C.
, and
Herder
,
J. L.
,
2012
, “
Comparative Analysis for Low-Mass and Low-Inertia Dynamic Balancing of Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031008
.
8.
Kamenskii
,
V. A.
,
1968
, “
On the Question of the Balancing of Plane Linkages
,”
J. Mech.
,
3
(
4
), pp.
303
322
.
9.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Reactionless Space and Ground Robots—Novel Designs and Concept Studies
,”
Mech. Mach. Theory
,
39
(
1
), pp.
25
40
.
10.
Arakelian
,
V.
,
2006
, “
Shaking Moment Cancellation of Self-Balanced Slider–Crank Mechanical Systems by Means of Optimum Mass Redistribution
,”
Mech. Res. Commun.
,
33
(
6
), pp.
846
850
.
11.
Van der Wijk
,
V.
, and
Herder
,
J. L.
,
2009
, “
Dynamic Balancing of Claver’s Delta Robot
,”
Computational Kinematics: Proceedings of the 5th International Workshop on Computational Kinematics
,
A.
Kecskemethy
and
A.
Müller
, eds.,
Duisburg, Germany
,
May 6–8
,
Springer
, pp.
315
322
.
12.
Briot
,
S.
,
Arakelian
,
V.
,
Sauvestre
,
N.
, and
Le Baron
,
J. P.
,
2010
, “
Shaking Forces Minimization of High-Speed Robots Via an Optimal Motion Planning
,”
ROMANSY 18 Robot Design, Dynamics and Control
,
Udine, Italy
,
July 5–8
,
Springer
,
Vienna
, pp.
307
314
.
13.
Briot
,
S.
,
Arakelian
,
V.
, and
Le Baron
,
J.-P.
,
2012
, “
Shaking Force Minimization of High-Speed Robots Via Centre of Mass Acceleration Control
,”
Mech. Mach. Theory
,
57
, pp.
1
12
.
14.
Geng
,
J.
,
Arakelian
,
V.
, and
Chablat
,
D.
,
2020
, “
Shaking Force Balancing of the Delta Robot
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 10: 44th Mechanisms and Robotics Conference (MR)
,
Virtual
,
Aug. 17–19
.
15.
Papadopoulos
,
E.
, and
Abu-Abed
,
A.
,
1994
, “
Design and Motion Planning for a Zero-Reaction Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, pp.
1554
1559
.
16.
He
,
G.
, and
Lu
,
Z.
,
2006
, “
Optimum Motion Planning of Parallel Redundant Mechanisms With Shaking Force Reduction
,”
The Proceedings of the Multiconference on “Computational Engineering in Systems Applications”
,
Beijing, China
,
Oct. 4–6
, Vol.
2
, pp.
1132
1139
.
17.
Ricard
,
R.
, and
Gosselin
,
C. M.
,
2000
, “
On the Development of Reactionless Parallel Manipulators
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 7A: 26th Biennial Mechanisms and Robotics Conference
,
Baltimore, MD
,
Sept. 10–13
, pp.
493
502
.
18.
Gosselin
,
C. M.
,
Vollmer
,
F.
,
Coté
,
G.
, and
Wu
,
Y.
,
2004
, “
Synthesis and Design of Reactionless Three-Degree-of-Freedom Parallel Mechanisms
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
191
199
.
19.
Wu
,
Y.
, and
Gosselin
,
C. M.
,
2004
, “
Synthesis of Reactionless Spatial 3-DoF and 6-DoF Mechanisms Without Separate Counter-Rotations
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
625
642
.
20.
van der Wijk
,
V.
, and
Herder
,
J. L.
,
2012
, “
Synthesis Method for Linkages With Center of Mass at Invariant Link Point—Pantograph Based Mechanisms
,”
Mech. Mach. Theory
,
48
, pp.
15
28
.
21.
van der Wijk
,
V.
,
2014
, “
Methodology for Analysis and Synthesis of Inherently Force and Moment-balanced Mechanisms—Theory and Applications
,”
Ph.D. thesis
,
University of Twente
,
Enschede
.
22.
Arakelian
,
V.
, and
Briot
,
S.
,
2015
,
Balancing of Linkages and Robot Manipulators—Advanced Methods With Illustrative Examples
,
Springer
,
Cham
.
23.
Arakelian
,
V.
,
2017
, “
Inertia Forces and Moments Balancing in Robot Manipulators: A Review
,”
Adv. Rob.
,
31
(
14
), pp.
717
726
.
24.
Feng
,
B.
,
Morita
,
N.
, and
Torii
,
T.
,
2002
, “
A New Optimization Method for Dynamic Design of Planar Linkage With Clearances at Joints-Optimizing the Mass Distribution of Links to Reduce the Change of Joint Forces
,”
J. Mech. Des.
,
124
(
1
), pp.
68
73
.
25.
Chaudhary
,
K.
, and
Chaudhary
,
H.
,
2015
, “
Optimal Dynamic Balancing and Shape Synthesis of Links in Planar Mechanisms
,”
Mech. Mach. Theory
,
93
, pp.
127
146
.
26.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization—Theory, Methods and Applications
, 2nd ed.,
Springer-Verlag
,
Berlin/Heidelberg
.
27.
Briot
,
S.
, and
Goldsztejn
,
A.
,
2018
, “Topology Optimization of a Reactionless Four-Bar Linkage,”
Computational Kinematics
,
Zeghloul
,
S.
,
Romdhane
,
L.
, and
Laribi
,
M. A.
, eds.,
Springer
,
Cham
, pp.
413
421
.
28.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Cambridge University Press
,
Cambridge
.
29.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
30.
Briot
,
S.
, and
Goldsztejn
,
A.
,
2018
, “
Topology Optimization of Industrial Robots: Application to a Five-Bar Mechanism
,”
Mech. Mach. Theory
,
120
, pp.
30
56
.
31.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
,
1996
, “
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
89
98
.
32.
Li
,
G.
,
Xu
,
F.
,
Huang
,
X.
, and
Sun
,
G.
,
2015
, “
Topology Optimization of an Automotive Tailor-Welded Blank Door
,”
ASME J. Mech. Des.
,
137
(
5
), p.
055001
.
33.
Deng
,
X.
,
Wang
,
Y.
,
Yan
,
J.
,
Liu
,
T.
, and
Wang
,
S.
,
2015
, “
Topology Optimization of Total Femur Structure: Application of Parameterized Level Set Method Under Geometric Constraints
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011402
.
34.
Liu
,
J.
, and
To
,
A. C.
,
2019
, “
Computer-Aided Design-Based Topology Optimization System With Dynamic Feature Shape and Modeling History Evolution
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071704
.
35.
Jiang
,
L.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2020
, “
Generative Design of Bionic Structures Via Concurrent Multiscale Topology Optimization and Conformal Geometry Method
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011701
.
36.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2022
, “
GANTL: Toward Practical and Real-Time Topology Optimization With Conditional Generative Adversarial Networks and Transfer Learning
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021711
.
37.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filteres for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
, pp.
401
424
.
38.
Qu
,
Z.-Q.
,
2004
,
Model Order Reduction Techniques With Applications in Finite Element Analysis
,
Springer-Verlag
,
London
.
39.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robot
,
Hermes Penton
,
London
.
40.
Balay
,
S.
,
Gropp
,
W. D.
,
McInnes
,
L. C.
, and
Smith
,
B. F.
,
1997
, “Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,”
Modern Software Tools in Scientific Computing
,
Arge
,
E.
,
Bruaset
,
A. M.
, and
Langtangen
,
H. P.
, eds.,
Birkhäuser Press
,
Boston, MA
, pp.
163
202
.
41.
Aage
,
N.
,
Andreassen
,
E.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimization Using PETSc: An Easy-to-Use, Fully Parallel, Open Source Topology Optimization Framework
,”
Struct. Multidiscipl. Optim.
,
51
, pp.
565
572
.
42.
Ahrens
,
J. P.
,
Geveci
,
B.
, and
Law
,
C. C. W.
,
2005
, “ParaView: An End-User Tool for Large-Data Visualization,”
The Visualization Handbook
,
Elsevier
, pp.
717
731
, ch. 36.
43.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
44.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
45.
Brown
,
D.
,
2008
, “
Video Modeling: Combining Dynamic Model Simulations With Traditional Video Analysis
,” American Association of Physics Teachers Summer Meeting, Edmonton, Canada.
You do not currently have access to this content.