Abstract

Model validation is the process of determining the degree to which a model is an accurate representation of the real object. Most of the existing model verification metrics rely on massive data, which are expensive to obtain in complex engineering problems. This paper first proposes a new enhanced Mahalanobis distance (EMD) metric by multiplying the original Mahalanobis distance with a direction angle to incorporate the correlation information using limited experimental and simulation data. Combining with EMD, an angle metric is developed as an alternative of the area metric to reduce the misjudgment rate of model validation. In order to quantify the uncertainty due to insufficient experimental and simulation data, the angle metric is further extended to a new interval angle metric, namely the interval EMD-pooling angle metric as the ultimate metric, for validating models at multiple sites. The proposed interval EMD-pooling angle metric is compared with other existing metrics through three numerical case studies to demonstrate its advantages when both experimental and simulation data are insufficient. An engineering example regarding ultrasonic welding is also provided to demonstrate the effectiveness of the proposed metric for practical model validation problems.

References

1.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
2.
Luk
,
O. O.
,
Lakhlili
,
J.
,
Hoenen
,
O.
,
Toussaint
,
U. v.
,
Scott
,
B. D.
, and
Coster
,
D. P.
,
2021
, “
Towards Validated Multiscale Simulations for Fusion
,”
Philos. Trans. R. Soc. A
,
379
(
2197
), p.
20200074
.
3.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
.
4.
Sornette
,
D.
,
Davis
,
A.
,
Ide
,
K.
,
Vixie
,
K.
,
Pisarenko
,
V.
, and
Kamm
,
J.
,
2007
, “
Algorithm for Model Validation: Theory and Applications
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
16
), pp.
6562
6567
.
5.
Mahadevan
,
S.
, and
Rebba
,
R.
,
2005
, “
Validation of Reliability Computational Models Using Bayes Networks
,”
Reliab. Eng. Syst. Saf.
,
87
(
2
), pp.
223
232
.
6.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K.-L.
, and
Wang
,
S.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021101
.
7.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
,
38
(
3
), pp.
209
272
.
8.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2408
2430
.
9.
Yoo
,
Y.
,
Jung
,
U.-J.
,
Han
,
Y. H.
, and
Lee
,
J.
,
2021
, “
Data Augmentation-Based Prediction of System Level Performance Under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)
,”
Reliab. Eng. Syst. Saf.
,
206
, p.
107316
.
10.
Li
,
L.
, and
Lu
,
Z.
,
2018
, “
A New Method for Model Validation With Multivariate Output
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
579
592
.
11.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
, pp.
1
11
.
12.
Zhao
,
L.
,
Lu
,
Z.
,
Yun
,
W.
, and
Wang
,
W.
,
2017
, “
Validation Metric Based on Mahalanobis Distance for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
159
, pp.
80
89
.
13.
Helton
,
J. C.
,
1994
, “
Treatment of Uncertainty in Performance Assessments for Complex Systems
,”
Risk Anal.
,
14
(
4
), pp.
483
511
.
14.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
.
15.
Lee
,
G.
,
Kim
,
W.
,
Oh
,
H.
,
Youn
,
B. D.
, and
Kim
,
N. H.
,
2019
, “
Review of Statistical Model Calibration and Validation—From the Perspective of Uncertainty Structures
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
1
26
.
16.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.
17.
Wang
,
N.
,
Yao
,
W.
,
Zhao
,
Y.
,
Chen
,
X.
,
Zhang
,
X.
, and
Li
,
L.
,
2018
, “
A New Interval Area Metric for Model Validation With Limited Experimental Data
,”
ASME J. Mech. Des.
,
140
(
6
), p.
061403
.
18.
Vabalas
,
A.
,
Gowen
,
E.
,
Poliakoff
,
E.
, and
Casson
,
A. J.
,
2019
, “
Machine Learning Algorithm Validation With a Limited Sample Size
,”
PLoS One
,
14
(
11
), p.
e0224365
.
19.
Jung
,
B. C.
,
Park
,
J.
,
Oh
,
H.
,
Kim
,
J.
, and
Youn
,
B. D.
,
2015
, “
A Framework of Model Validation and Virtual Product Qualification With Limited Experimental Data Based on Statistical Inference
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
573
583
.
20.
Mahalanobis
,
P. C.
,
1936
, “
On the Generalized Distance in Statistics
,”
J. Asiat. Soc. Bengal
,
XXVI
, pp.
541
588
.
21.
Giansanti
,
D.
,
Macellari
,
V.
, and
Maccioni
,
G.
,
2008
, “
New Neural Network Classifier of Fall-Risk Based on the Mahalanobis Distance and Kinematic Parameters Assessed by a Wearable Device
,”
Physiol. Meas.
,
29
(
3
), pp.
N11
N19
.
22.
Xiang
,
S.
,
Nie
,
F.
, and
Zhang
,
C.
,
2008
, “
Learning a Mahalanobis Distance Metric for Data Clustering and Classification
,”
Pattern Recognit.
,
41
(
12
), pp.
3600
3612
.
23.
Galeano
,
P.
,
Joseph
,
E.
, and
Lillo
,
R. E.
,
2015
, “
The Mahalanobis Distance for Functional Data With Applications to Classification
,”
Technometrics
,
57
(
2
), pp.
281
291
.
24.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
,
2004
, “
Model Validation Via Uncertainty Propagation and Data Transformations
,”
AIAA J.
,
42
(
7
), pp.
1406
1415
.
25.
Natesh
,
M.
,
Yun
,
L.
,
Vendan
,
S. A.
,
Kumar
,
K. R.
,
Gao
,
L.
,
Niu
,
X.
,
Peng
,
X.
, and
Garg
,
A.
,
2019
, “
Experimental and Numerical Procedure for Studying Strength and Heat Generation Responses of Ultrasonic Welding of Polymer Blends
,”
Measurement
,
132
, pp.
1
10
.
26.
Du
,
P.
,
Chen
,
W.
,
Deng
,
J.
,
Li
,
K.
, and
Liu
,
Y.
,
2020
, “
Effects of Knurl Tooth Angle on Mechanical and Thermal Behaviors of Aluminum Ultrasonic Welding
,”
Ultrasonics
,
108
, p.
106207
.
27.
Ning
,
J.
,
Nguyen
,
V.
,
Huang
,
Y.
,
Hartwig
,
K. T.
, and
Liang
,
S. Y.
,
2018
, “
Inverse Determination of Johnson–Cook Model Constants of Ultra-Fine-Grained Titanium Based on Chip Formation Model and Iterative Gradient Search
,”
Int. J. Adv. Manuf. Technol.
,
99
(
5
), pp.
1131
1140
.
28.
Li
,
H.
,
Cao
,
B.
,
Liu
,
J.
, and
Yang
,
J.
,
2018
, “
Modeling of High-Power Ultrasonic Welding of Cu/Al Joint
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
833
844
.
29.
Chen
,
K.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2017
, “
Effect of Acoustic Softening on the Thermal-Mechanical Process of Ultrasonic Welding
,”
Ultrasonics
,
75
, pp.
9
21
.
You do not currently have access to this content.