Abstract

Most practical multi-objective optimization problems are often characterized by two or more expensive and conflicting objectives, which require time-consuming simulations. Commonly used algorithms construct a surrogate model of each objective function from a few high-fidelity solutions. In order to further decrease the computational burden, adaptive infilling strategies for multi-objective problems are developed to guide the next infilling design for expensive evaluation and update the surrogate model as well as the Pareto front in an iterative manner. In this paper, a multi-objective infilling strategy integrating the Kriging model with a two-stage infilling framework is proposed, termed as ATKIS. This method allows exploitation and exploration alternately to pinpoint the infilling solution for improving the Pareto set and avoiding local over-exploitation simultaneously. At the local exploitation stage, Kriging-based prediction and uncertainty estimation are combined with Non-dominant Ranking and Minimum Relative Distance theories for determining a new design solution, which has maximum improvement relative to the current Pareto set. At the global exploration stage, Voronoi tessellation theory is employed to search for the sparsest position in the design space for a new evaluation. The proposed method is compared with five recent infilling strategies to investigate the performance of infilling ability using several numerical benchmarks. The experimental results show that the proposed method outperforms the other three strategies in improving both effectiveness and robustness using the improvement of hypervolume as the evaluating indicator. In addition, a lightweight optimization design of hoist sheaves shows that the proposed method can deal with real engineering problems, while significantly reducing the computational time and the number of expensive simulations of samples.

References

1.
Law
,
A. M.
,
Kelton
,
W. D.
, and
Kelton
,
W. D.
,
2000
,
Simulation Modeling and Analysis
, Vol.
3
,
McGraw-Hill
,
New York
.
2.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021004
.
3.
Li
,
K.
,
Liu
,
Y.
,
Wang
,
S.
, and
Song
,
X.
,
2021
, “
Multi-Fidelity Data Fusion Based on Gradient-Enhanced Surrogate Modelling Method
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121704
.
4.
Wang
,
S.
,
Liu
,
Y.
,
Zhou
,
Q.
,
Yuan
,
Y.
,
Lv
,
L.
, and
Song
,
X.
,
2021
, “
A Multi-Fidelity Surrogate Model Based on Moving Least Squares: Fusing Different Fidelity Data for Engineering Design
,”
Struct. Multidiscipl. Optim.
,
64
(
6
), pp.
3637
3652
.
5.
Song
,
X.
,
Lv
,
L.
,
Li
,
J.
,
Sun
,
W.
, and
Zhang
,
J.
,
2018
, “
An Advanced and Robust Ensemble Surrogate Model: Extended Adaptive Hybrid Functions
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041402
.
6.
Smolik
,
M.
, and
Skala
,
V.
,
2020
, “
Efficient Speed-Up of Radial Basis Functions Approximation and Interpolation Formula Evaluation
,”
International Conference on Computational Science and Its Applications
,
July 1–4
,
Springer
,
Cham
, pp.
165
176
.
7.
Yang
,
X.
,
Liu
,
Y.
,
Mi
,
C.
, and
Wang
,
X.
,
2018
, “
Active Learning Kriging Model Combining With Kernel-Density-Estimation-Based Importance Sampling Method for the Estimation of Low Failure Probability
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051402
.
8.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
(
1
), pp.
1
13
.
9.
Lebensztajn
,
L.
,
Marretto
,
C. R.
,
Costa
,
M. C.
, and
Coulomb
,
J. L.
,
2004
, “
Kriging: A Useful Tool for Electromagnetic Device Optimization
,”
IEEE Trans. Magn.
,
40
(
2
), pp.
1196
1199
.
10.
Dong
,
H.
,
Sun
,
S.
,
Song
,
B.
, and
Wang
,
P.
,
2019
, “
Multi-Surrogate-Based Global Optimization Using a Score-Based Infill Criterion
,”
Struct. Multidiscipl. Optim.
,
59
(
2
), pp.
485
506
.
11.
Durantin
,
C.
,
Marzat
,
J.
, and
Balesdent
,
M.
,
2016
, “
Analysis of Multi-Objective Kriging-Based Methods for Constrained Global Optimization
,”
Comput. Optim. Appl.
,
63
(
3
), pp.
903
926
.
12.
Lv
,
L.
,
Shi
,
M.
,
Song
,
X.
,
Sun
,
W.
, and
Zhang
,
J.
,
2020
, “
A Fast-Converging Ensemble Infilling Approach Balancing Global Exploration and Local Exploitation: the Go-Inspired Hybrid Infilling Strategy
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021403
.
13.
Mockus
,
J.
,
2012
,
Bayesian Approach to Global Optimization: Theory and Applications
, Vol.
37
,
Springer Science & Business Media
,
Berlin, Germany
.
14.
Kaminsky
,
A. L.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
An Efficient Batch K-Fold Cross-Validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011706
.
15.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optim.
,
34
(
3
), pp.
263
278
.
16.
Wang
,
H.
, and
Li
,
G.
,
2012
, “
Min–Median–Max Metamodel-Based Unconstrained Nonlinear Optimization Problems
,”
Struct. Multidiscipl. Optim.
,
45
(
3
), pp.
401
415
.
17.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
J. Fluid. Eng.
,
86
(
1
), pp.
97
106
.
18.
Chang
,
Y. C.
, and
Wu
,
C. W.
,
2008
, “
Assessing Process Capability Based on the Lower Confidence Bound of Cpk for Asymmetric Tolerances
,”
Eur. J. Oper. Res.
,
190
(
1
), pp.
205
227
.
19.
Shahi
,
S. K.
,
Wang
,
G. G.
,
An
,
L.
,
Bibeau
,
E.
, and
Pirmoradi
,
Z.
,
2012
, “
Using the Pareto Set Pursuing Multiobjective Optimization Approach for Hybridization of a Plug-In Hybrid Electric Vehicle
,”
ASME J. Mech. Des.
,
134
(
9
), p.
094503
.
20.
Viviani
,
A.
,
Iuspa
,
L.
, and
Aprovitola
,
A.
,
2017
, “
Multi-Objective Optimization for Re-Entry Spacecraft Conceptual Design Using a Free-Form Shape Generator
,”
Aerosp. Sci. Technol.
,
71
, pp.
312
324
.
21.
Leifsson
,
L.
,
Koziel
,
S.
, and
Tesfahunegn
,
Y. A.
,
2016
, “
Multiobjective Aerodynamic Optimization by Variable-Fidelity Models and Response Surface Surrogates
,”
AIAA J.
,
54
(
2
), pp.
531
541
.
22.
Altuzarra
,
O.
,
Hernandez
,
A.
,
Salgado
,
O.
, and
Angeles
,
J.
,
2009
, “
Multiobjective Optimum Design of a Symmetric Parallel Schönflies-Motion Generator
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031002
.
23.
Couckuyt
,
I.
,
Deschrijver
,
D.
, and
Dhaene
,
T.
,
2014
, “
Fast Calculation of Multi-Objective Probability of Improvement and Expected Improvement Criteria for Pareto Optimization
,”
J. Global Optim.
,
60
(
3
), pp.
575
594
.
24.
Rahat
,
A. A.
,
Everson
,
R. M.
, and
Fieldsend
,
J. E.
,
2017
, “
Alternative Infill Strategies for Expensive Multi-Objective Optimisation
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Berlin, Germany
,
July 15–19
, pp.
873
880
.
25.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Chichester, UK
.
26.
Emmerich
,
M.
,
2005
, “
Single- and Multi-Objective Evolutionary Design Optimization Assisted by Gaussian Random Field Metamodels
,”
dissertation
,
Universität Dortmund
.
27.
Yang
,
K.
,
Gaida
,
D.
,
Bäck
,
T.
, and
Emmerich
,
M.
,
2015
, “
Expected Hypervolume Improvement Algorithm for PID Controller Tuning and the Multiobjective Dynamical Control of a Biogas Plant
,”
Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC)
,
Sendai, Japan
,
May 25–28
,
IEEE
, pp.
1934
1942
.
28.
Emmerich
,
M. T.
,
Deutz
,
A. H.
, and
Klinkenberg
,
J. W.
,
2011
, “
Hypervolume-Based Expected Improvement: Monotonicity Properties and Exact Computation
,”
Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC)
,
New Orleans, LA
,
June 5–8
,
IEEE
, pp.
2147
2154
.
29.
Martínez-Frutos
,
J.
, and
Herrero-Pérez
,
D.
,
2016
, “
Kriging-Based Infill Sampling Criterion for Constraint Handling in Multi-Objective Optimization
,”
J. Global Optim.
,
64
(
1
), pp.
97
115
.
30.
Luo
,
C.
,
Shimoyama
,
K.
, and
Obayashi
,
S.
,
2014
, “
Kriging Model Based Many-Objective Optimization With Efficient Calculation of Expected Hypervolume Improvement
,”
Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC)
,
Beijing, China
,
July 6–11
,
IEEE
, pp.
1187
1194
.
31.
Keane
,
A. J.
,
2006
, “
Statistical Improvement Criteria for Use in Multiobjective Design Optimization
,”
AIAA J.
,
44
(
4
), pp.
879
891
.
32.
Yang
,
K.
,
Emmerich
,
M.
,
Deutz
,
A.
, and
Bäck
,
T.
,
2019
, “
Multi-Objective Bayesian Global Optimization Using Expected Hypervolume Improvement Gradient
,”
Swarm Evol. Comput.
,
44
, pp.
945
956
.
33.
He
,
Y.
,
Sun
,
J.
,
Song
,
P.
,
Wang
,
X.
, and
Usmani
,
A. S.
,
2020
, “
Preference-Driven Kriging-Based Multiobjective Optimization Method With a Novel Multipoint Infill Criterion and Application to Airfoil Shape Design
,”
Aerosp. Sci. Technol.
,
96
, p.
105555
.
34.
Yang
,
K.
,
Palar
,
P. S.
,
Emmerich
,
M.
,
Shimoyama
,
K.
, and
Bäck
,
T.
,
2019
, “
A Multi-Point Mechanism of Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Global Optimization
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Prague, Czech Republic
,
July 13–17
, pp.
656
663
.
35.
Bautista
,
D. C.
,
2009
,
A Sequential Design for Approximating the Pareto Front Using the Expected Pareto Improvement Function
,
The Ohio State University
.
36.
Svenson
,
J.
, and
Santner
,
T.
,
2016
, “
Multiobjective Optimization of Expensive-to-Evaluate Deterministic Computer Simulator Models
,”
Comput. Stat. Data Anal.
,
94
, pp.
250
264
.
37.
Zhan
,
D.
,
Cheng
,
Y.
, and
Liu
,
J.
,
2017
, “
Expected Improvement Matrix-Based Infill Criteria for Expensive Multiobjective Optimization
,”
EEE Trans. Evol. Comput.
,
21
(
6
), pp.
956
975
.
38.
Namura
,
N.
,
Shimoyama
,
K.
, and
Obayashi
,
S.
,
2017
, “
Expected Improvement of Penalty-Based Boundary Intersection for Expensive Multiobjective Optimization
,”
EEE Trans. Evol. Comput.
,
21
(
6
), pp.
898
913
.
39.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.
40.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
41.
Xing
,
J.
,
Luo
,
Y.
, and
Gao
,
Z.
,
2020
, “
A Global Optimization Strategy Based on the Kriging Surrogate Model and Parallel Computing
,”
Struct. Multidiscipl. Optim.
,
62
(
1
), pp.
405
417
.
42.
Lee
,
J.
,
Lee
,
S. I.
,
Ahn
,
J.
, and
Choi
,
H. L.
,
2018
, “
Pareto Front Generation With Knee-Point Based Pruning for Mixed Discrete Multi-Objective Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
823
830
.
43.
Li
,
H.
,
Zhang
,
Q.
, and
Deng
,
J.
,
2016
, “
Biased Multiobjective Optimization and Decomposition Algorithm
,”
IEEE Trans. Cybern.
,
47
(
1
), pp.
52
66
.
44.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.
45.
Wang
,
X.
,
Jin
,
Y.
,
Schmitt
,
S.
, and
Olhofer
,
M.
,
2020
, “
An Adaptive Bayesian Approach to Surrogate-Assisted Evolutionary Multi-Objective Optimization
,”
Inf. Sci.
,
519
, pp.
317
331
.
You do not currently have access to this content.