Abstract

Passive gravity compensation can effectively reduce the load of actuators, but existing methods are commonly complex in terms of mechanisms and elastic systems with zero-free-length (ZFL) property. A compensation strategy using all joint information is further developed in this paper, as well as the involved elastic system. This approach with considerable compensation effect is simple in principle, and the ZFL property is precisely and completely realized by commercial springs. Compared with the previous method, the process of spring selection is also greatly simplified. Possible arrangements with approximate compensation are also calculated and discussed to achieve a compromise between the compensation effect and the mechanism complexity. The elastic system for Delta-like is implemented and calibrated as an illustration. The results show that the stiffness error rate is reduced from 23.53% to 3.92% and the compensation effect is improved by 63.36% for full compensation and 24.01% for approximate compensation, respectively.

References

1.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mech.
,
22
(
3
), pp.
1308
1314
.
2.
Kim
,
C.-K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
3.
Yamada
,
Y.
,
Arakawa
,
H.
,
Watanabe
,
T.
,
Fukuyama
,
S.
,
Nishihama
,
R.
,
Kikutani
,
I.
, and
Nakamura
,
T.
,
2020
, “
Overhead Work Assist With Passive Gravity Compensation Mechanism and Horizontal Link Mechanism for Agriculture
,”
2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
,
Naples, Italy
,
Aug. 31–Sept. 4
, pp.
104
111
.
4.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2020
, “
Optimization of the Energy Consumption Through Spring Balancing of Servo-Actuated Mechanisms
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012301
.
5.
Formaglio
,
A.
,
Fei
,
M.
,
Mulatto
,
S.
,
de Pascale
,
M.
, and
Prattichizzo
,
D.
,
2008
, “
Autocalibrated Gravity Compensation for 3DoF Impedance Haptic Devices
,”
International Conference on Human Haptic Sensing and Touch Enabled Computer Applications
,
Madrid, Spain
,
June 10–13
, LNCS 5024, pp.
43
52
.
6.
Chheta
,
Y. R.
,
Joshi
,
R. M.
,
Gotewal
,
K. K.
, and
ManoahStephen
,
M.
,
2017
, “
A Review on Passive Gravity Compensation
,”
2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA)
,
Coimbatore, India
,
Apr. 20–22
, pp.
184
189
.
7.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Robot.
,
30
(
2
), pp.
79
96
.
8.
Hur
,
S.-m.
,
Park
,
J.
,
Park
,
J.
, and
Oh
,
Y.
,
2020
, “
Design of a Parallel Haptic Device With Gravity Compensation by Using Its System Weight
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–June 15
, pp.
11103
11108
.
9.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
,
2008
, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072305
.
10.
Mashayekhi
,
A.
,
Nahvi
,
A.
,
Yazdani
,
M.
,
Moghadam
,
M. M.
,
Arbabtafti
,
M.
, and
Norouzi
,
M.
,
2014
, “
VirSense: A Novel Haptic Device With Fixed-Base Motors and a Gravity Compensation System
,”
Ind. Rob. Int. J.
,
40
(
1
), pp.
37
49
.
11.
Perreault
,
S.
,
Cardou
,
P.
, and
Gosselin
,
C.
,
2014
, “
Approximate Static Balancing of a Planar Parallel Cable-Driven Mechanism Based on Four-Bar Linkages and Springs
,”
Mech. Mach. Theory
,
79
, pp.
64
79
.
12.
Quaglia
,
G.
, and
Yin
,
Z.
,
2015
, “
Static Balancing of Planar Articulated Robots
,”
Front. Mech. Eng.
,
10
(
4
), pp.
326
343
.
13.
Briot
,
S. B.
,
Baradat
,
C. D.
,
Guégan
,
S.
, and
Arakelian
,
V.
,
2007
, “
Contribution to the Mechanical Behavior Improvement of the Robotic Navigation Device Surgiscope®
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, pp.
653
661
, 48094.
14.
French
,
M. J.
, and
Widden
,
M. B.
,
2000
, “
The Spring-and-Lever Balancing Mechanism, George Carwardine and the Anglepoise Lamp
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
214
(
3
), pp.
501
508
.
15.
Lu
,
Q.
,
Ortega
,
C.
, and
Ma
,
O.
,
2011
, “
Passive Gravity Compensation Mechanisms: Technologies and Applications
,”
Recent Pat. Eng.
,
5
(
1
), pp.
32
44
.
16.
Tobergte
,
A.
, and
Helmer
,
P.
,
2013
, “
A Disturbance Observer for the Sigma. 7 Haptic Device
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–8
pp.
4964
4969
.
17.
Gatti
,
G.
, and
Carbone
,
G.
,
2020
, “
Gravity Compensation of Robotic Manipulators Using Non-linear Spring Configurations
,”
International Conference on IFToMM ITALY
,
Naples, Italy
,
Sept. 9–11
,
vol. 91
, pp.
310
317
.
18.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
, and
Wang
,
X.
,
2016
, “
Passive and Active Gravity Compensation of Horizontally-Mounted 3-RPS Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
104
, pp.
190
201
.
19.
Li
,
J.
,
Fu
,
J.
,
Wu
,
S.
, and
Wang
,
Q.
,
2021
, “
An Active and Passive Combined Gravity Compensation Approach for a Hybrid Force Feedback Device
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
235
(
19
), pp.
4368
4381
.
20.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
21.
Endo
,
G.
,
Yamada
,
H.
,
Yajima
,
A.
,
Ogata
,
M.
, and
Hirose
,
S.
,
2010
, “
A Passive Weight Compensation Mechanism With a Non-circular Pulley and a Spring
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–8
, pp.
3843
3848
.
22.
van Dam
,
T.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2011
, “
Static Balancing of Translational Parallel Mechanisms
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE)
,
Washington, DC
,
Aug. 28–31
, pp.
883
889
.
23.
Simionescu
,
I.
,
Ciupitu
,
L.
, and
Ionita
,
L. C.
,
2015
, “
Static Balancing With Elastic Systems of DELTA Parallel Robots
,”
Mech. Mach. Theory
,
87
, pp.
150
162
.
24.
Delissen
,
A. A.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design and Optimization of a General Planar Zero Free Length Spring
,”
Mech. Mach. Theory
,
117
, pp.
56
77
.
25.
Herder
,
J. L.
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Mechanisms
,”
Ph.D. thesis
,
Delft University of Technology
,
Delft
,
2001
.
26.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
.
27.
Arata
,
J.
,
Kondo
,
H.
,
Ikedo
,
N.
, and
Fujimoto
,
H.
,
2011
, “
Haptic Device Using a Newly Developed Redundant Parallel Mechanism
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
201
214
.
28.
Jin
,
L.
,
Duan
,
X.
,
Li
,
C.
,
Shi
,
Q.
,
Wen
,
H.
,
Wang
,
J.
, and
Li
,
H.
,
2021
, “
Design of a Novel Parallel Mechanism for Haptic Device
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
045001
.
29.
Dehkordi
,
M. B.
,
Frisoli
,
A.
,
Sotgiu
,
E.
, and
Bergamasco
,
M.
,
2012
, “
Modelling and Experimental Evaluation of a Static Balancing Technique for a New Horizontally Mounted 3-UPU Parallel Mechanism
,”
Int. J. Adv. Rob. Syst.
,
9
(
5
), pp.
193
204
.
30.
Martini
,
A.
,
Troncossi
,
M.
,
Carricato
,
M.
, and
Rivola
,
A.
,
2015
, “
Static Balancing of a Parallel Kinematics Machine With Linear-Delta Architecture: Theory, Design and Numerical Investigation
,”
Mech. Mach. Theory
,
90
, pp.
128
141
.
31.
Lambert
,
P.
, and
Herder
,
J. L.
, “
A 7-DOF Redundantly Actuated Parallel Haptic Device Combining 6-DOF Manipulation and 1-DOF Grasping
,”
Mech. Mach. Theory
,
134
, pp.
349
364
.
32.
Chablat
,
D.
,
Wenger
,
P.
,
Majou
,
F.
, and
Merlet
,
J.-P.
,
2004
, “
An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
615
624
.
33.
Kim
,
J.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
G.
,
2020
, “
Compact Variable Gravity Compensation Mechanism With a Geometrically Optimized Lever for Maximizing Variable Ratio of Torque Generation
,”
IEEE/ASME Trans. Mech.
,
25
(
4
), pp.
2019
2026
.
You do not currently have access to this content.