Abstract

Recently, online user-generated data have emerged as a valuable source for industrial applications. In the consumer product area, many studies analyze online data and draw implications on product design. However, most of them treat online customers as one group with the same preferences, while customer segmentation is a key strategy in conventional market analysis. This paper proposes a new methodology based on text mining and network analysis for online customer segmentation. First, the method extracts customer attributes from online review data. Then, a customer network is constructed based on these attributes and predefined networking rules. For networking, a new concept of “topic similarity” is proposed to reflect social meaning in the customer network. Finally, the network is partitioned by modularity clustering, and the resultant clusters are analyzed to understand segment properties. We validate our methodology using real-world data sets of smartphone reviews. The result shows that the proposed methodology properly reflects the heterogeneity of the online customers in the segmentation result. The practical application of customer segmentation is presented, illustrating how it can help companies design target-customer-oriented products.

References

1.
Kotler
,
P.
, and
Keller
,
K. L.
,
2016
,
A Framework for Marketing Management
,
Pearson
,
Harlow
.
2.
Camilleri
,
M. A.
,
2018
,
Travel Marketing, Tourism Economics and the Airline Product: An Introduction to Theory and Practice
,
Springer
,
Cham
.
3.
Tuma
,
M. N.
,
Decker
,
R.
, and
Scholz
,
S. W.
,
2011
, “
A Survey of the Challenges and Pifalls of Cluster Analysis Application in Market Segmentation
,”
Int. J. Market Res.
,
53
(
3
), pp.
391
414
.
4.
Fink
,
A.
,
2002
,
How to Ask Survey Questions
,
SAGE
,
Thousand Oaks, CA
.
5.
Kim
,
H. H. M.
,
Liu
,
Y.
,
Wang
,
C. C.
, and
Wang
,
Y.
,
2017
, “
Data-Driven Design (d3)
,”
ASME J. Mech. Des.
,
139
(
11
), p.
110301
.
6.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Automated Keyword Filtering in Latent Dirichlet Allocation for Identifying Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
084501
.
7.
Tuarob
,
S.
, and
Tucker
,
C.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
8.
Yang
,
B.
,
Liu
,
Y.
,
Liang
,
Y.
, and
Tang
,
M.
,
2019
, “
Exploiting User Experience From Online Customer Reviews for Product Design
,”
Int. J. Inform. Manage.
,
46
, pp.
173
186
.
9.
Suryadi
,
D.
, and
Kim
,
H.
,
2018
, “
A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121403
.
10.
Smith
,
W. R.
,
1956
, “
Product Differentiation and Market Segmentation As Alternative Marketing Strategies
,”
J. Marketing
,
21
(
1
), pp.
3
8
.
11.
Liang
,
T.-P.
, and
Liu
,
Y.-H.
,
2018
, “
Research Landscape of Business Intelligence and Big Data Analytics: A Bibliometrics Study
,”
Expert Syst. Appl.
,
111
, pp.
2
10
.
12.
Zhou
,
F.
,
Ayoub
,
J.
,
Xu
,
Q.
, and
Yang
,
X. J.
,
2019
, “
A Machine Learning Approach to Customer Needs Analysis for Product Ecosystems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011101
.
13.
Zhang
,
D.
,
Xu
,
H.
,
Su
,
Z.
, and
Xu
,
Y.
,
2015
, “
Chinese Comments Sentiment Classification Based on Word2vec and Svmperf
,”
Expert Syst. Appl.
,
42
(
4
), pp.
1857
1863
.
14.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Approach for Importance–Performance Analysis of Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081705
.
15.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Automated Discovery of Lead Users and Latent Product Features by Mining Large Scale Social Media Networks
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071402
.
16.
Bi
,
J.-W.
,
Liu
,
Y.
,
Fan
,
Z.-P.
, and
Cambria
,
E.
,
2019
, “
Modelling Customer Satisfaction From Online Reviews Using Ensemble Neural Network and Effect-Based Kano Model
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
7068
7088
.
17.
Wang
,
M.
, and
Chen
,
W.
,
2015
, “
A Data-Driven Network Analysis Approach to Predicting Customer Choice Sets for Choice Modeling in Engineering Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071410
.
18.
Park
,
Y.
, and
Lee
,
S.
,
2011
, “
How to Design and Utilize Online Customer Center to Support New Product Concept Generation
,”
Expert Syst. Appl.
,
38
(
8
), pp.
10638
10647
.
19.
Suryadi
,
D.
, and
Kim
,
H. M.
,
2019
, “
A Data-Driven Methodology to Construct Customer Choice Sets Using Online Data and Customer Reviews
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111103
.
20.
Bondy
,
A. J.
,
1976
,
Graph Theory With Applications
,
Macmillan
,
London
.
21.
Borgatti
,
S. P.
,
Mehra
,
A.
,
Brass
,
D. J.
, and
Labianca
,
G.
,
2009
, “
Network Analysis in the Social Sciences
,”
Science
,
323
(
5916
), pp.
892
895
.
22.
Derrible
,
S.
, and
Kennedy
,
C.
,
2009
, “
Network Analysis of World Subway Systems Using Updated Graph Theory
,”
Transport Res. Record: J. Transport Res. Board
,
2112
(
1
), pp.
17
25
.
23.
Xing
,
W.
, and
Ghorbani
,
A.
,
2004
, “
Weighted Pagerank Algorithm
,”
Proceedings. Second Annual Conference on Communication Networks and Services Research
,
Fredericton, NB, Canada
,
May 21
, IEEE, pp.
305
314
.
24.
Netzer
,
O.
,
Feldman
,
R.
,
Goldenberg
,
J.
, and
Fresko
,
M.
,
2012
, “
Mine Your Own Business: Market-Structure Surveillance Through Text Mining
,”
Marketing Sci.
,
31
(
3
), pp.
521
543
.
25.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2007
, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1118
1129
.
26.
Jamali
,
M.
, and
Abolhassani
,
H.
,
2006
, “
Different Aspects of Social Network Analysis
,”
2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings) (WI’06)
,
Hong Kong, China
,
Dec. 18–22
, pp.
66
72
.
27.
Das
,
K.
,
Samanta
,
S.
, and
Pal
,
M.
,
2018
, “
Study on Centrality Measures in Social Networks: A Survey
,”
Soc. Netw. Anal. Min.
,
8
(
1
), pp.
1
11
.
28.
Hao
,
F.
,
Min
,
G.
,
Pei
,
Z.
,
Park
,
D.
, and
Yang
,
L. T.
,
2017
, “
k-clique Community Detection in Social Networks Based on Formal Concept Analysis
,”
IEEE Syst. J.
,
11
(
1
), pp.
250
259
.
29.
Emmons
,
S.
,
Kobourov
,
S.
,
Gallant
,
M.
, and
Börner
,
K.
,
2016
, “
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale
,”
PLoS One
,
11
(
7
), p.
e0159161
.
30.
Von Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Stat. Comput.
,
17
(
4
), pp.
395
416
.
31.
Girvan
,
M.
, and
Newman
,
M. E.
,
2002
, “
Community Structure in Social and Biological Networks
,”
Proc. Natl. Acad. Sci. USA
,
99
(
12
), pp.
7821
7826
.
32.
Blondel
,
V. D.
,
Guillaume
,
J. -L.
,
Lambiotte
,
R.
, and
Lefebvre
,
E.
,
2008
, “
Fast Unfolding of Communities in Large Networks
,”
J. Stat. Mech.: Theory Exp.
,
2008
(
10
), p.
P10008
.
33.
Dinh
,
T. N.
,
Li
,
X.
, and
Thai
,
M. T.
,
2015
, “
Network Clustering Via Maximizing Modularity: Approximation Algorithms and Theoretical Limits
,”
2015 IEEE International Conference on Data Mining
,
Atlantic City, NJ
,
Nov. 14–17
, IEEE, pp.
101
110
.
34.
Sánchez
,
D. L.
,
Revuelta
,
J.
,
Prieta
,
F. D. L.
,
Gil-González
,
A. B.
, and
Dang
,
C.
,
2016
, “
Twitter User Clustering Based on Their Preferences and the Louvain Algorithm
,”
International Conference on Practical Applications of Agents and Multi-agent Systems
,
Sevilla, Spain
,
June 1–3
, Springer, pp.
349
356
.
35.
Rahiminejad
,
S.
,
Maurya
,
M. R.
, and
Subramaniam
,
S.
,
2019
, “
Topological and Functional Comparison of Community Detection Algorithms in Biological Networks
,”
BMC Bioinform.
,
20
(
1
), pp.
1
25
.
36.
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Phrase Embedding and Clustering for Sub-feature Extraction From Online Data
,”
ASME J. Mech. Des.
,
144
(
5
), p.
054501
.
37.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Efficient Estimation of Word Representations in Vector Space
”. e-print arXiv:1301.3781v.
38.
Park
,
S.
, and
Kim
,
H. M.
,
2021
, “
Data-Driven Customer Segmentation Based on Online Review Analysis and Customer Network Construction
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
85383
,
American Society of Mechanical Engineers
, Paper No. V03AT03A015.
39.
Ye
,
J.
,
2011
, “
Cosine Similarity Measures for Intuitionistic Fuzzy Sets and Their Applications
,”
Math. Comput. Modell.
,
53
(
1–2
), pp.
91
97
.
40.
Nguyen
,
H. V.
, and
Bai
,
L.
,
2011
, “
Cosine Similarity Metric Learning for Face Verification
,”
Asian Conference on Computer Vision
,
Queenstown, New Zealand
,
Nov. 8–12
, pp.
709
720
.
41.
Li
,
J.
,
Wu
,
Z.
,
Zhu
,
B.
, and
Xu
,
K.
,
2018
, “
Making Sense of Organization Dynamics Using Text Analysis
,”
Expert Syst. Appl.
,
111
, pp.
107
119
.
42.
Newman
,
M. E. J.
,
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
2002
, “
Random Graph Models of Social Networks
,”
Proceedings of the National Academy of Sciences
, Vol.
99
, pp.
2566
2572
.
43.
Fortunato
,
S.
, and
Barthélemy
,
M.
,
2007
, “
Resolution Limit in Community Detection
,”
Proc. Natl. Acad. Sci. USA
,
104
(
1
), pp.
36
41
.
44.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
H.
,
2009
,
An Introduction to Information Retrieval
,
Cambridge University Press
,
Cambridge, UK
.
45.
O’Dea
,
S.
,
2021
, “
Smartphones in the U.S. – Statistics & Facts
,” https://www.statista.com/topics/2711/us-smartphone-market/
46.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining Opinion Features in Customer Reviews
,”
19th National Conference on Artificial Intelligence
,
San Jose, CA
,
July 25–29
, pp.
755
760
.
47.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
48.
Dolnicar
,
S.
,
Grün
,
B.
,
Leisch
,
F.
, and
Schmidt
,
K.
,
2013
, “
Required Sample Sizes for Data-Driven Market Segmentation Analyses in Tourism
,”
J. Travel Res.
,
53
(
3
), pp.
296
306
.
49.
Michaels
,
P.
,
2021
, “
Best Phone Battery Life in 2022: The Longest Lasting Smartphones
,” https://www.tomsguide.com/us/smartphones-best-battery-life,review-2857.html
50.
Pelleg
,
D.
, and
Moore
,
A. W.
,
2000
, “
X-means: Extending K-means With Efficient Estimation of the Number of Clusters
,”
ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning
,
Stanford, CA
,
June 29–July 2
, pp.
723
734
.
51.
Shocker
,
A. D.
,
Ben-Akiva
,
M.
,
Boccara
,
B.
, and
Nedungadi
,
P.
,
1991
, “
Consideration Set Influences on Consumer Decision-Making and Choice: Issues, Models, and Suggestions
,”
Marketing Lett.
,
2
(
3
), pp.
181
197
.
52.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
,
Decision-Based Design
,
Springer
,
London
.
53.
Ben-Akiva
,
M.
, and
Lermna
,
S. R.
,
1985
,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
The MIT Press
,
Cambridge
.
54.
Kim
,
J.
,
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Optimal Modular Remanufactured Product Configuration and Harvesting Planning for End-of-Life Products
,”
ASME J. Mech. Des.
,
144
(
4
), p.
042001
.
You do not currently have access to this content.