Abstract

Customization of manipulators having unconventional parameters and link shapes have gained attention to accomplish nonrepetitive tasks in a given cluttered environment. Adaptive modular and reconfigurable designs are being used to achieve customization and have provided time and cost-effective solutions. Major challenges are associated to provide the systematic approach on the design and realization of modular components considering connectivity and integration. This article focuses on the architectural synthesis of the modular links, optimized with respect to the dynamic torques while following a prescribed set of trajectories. The design methodology is proposed as an Architecture Prominent Sectioning−k strategy, which assumes a modular link as an equivalent system of k number of point masses, performing optimization to minimize the joint torques and map the resulting re-adjusted point masses into a possible architecture. The proposed strategy is general and can be applied to planar or spatial manipulators with n−DoF even with nonparallel and nonperpendicular jointed configurations. The design of optimal curved links is realized resulting from the optimized solution considering the dynamics of the modular configurations over primitive trajectories. The proposed modular library of unconventional curved link modules with joint modules have shown lesser requirement of the joint torques compared to the conventional straight links.

References

1.
Althoff
,
M.
,
Giusti
,
A.
,
Liu
,
S. B.
, and
Pereira
,
A.
,
2019
, “
Effortless Creation of Safe Robots From Modules Through Self-Programming and Self-Verification
,”
Sci. Rob.
,
4
(
31
), p.
aaw1924
.
2.
Yun
,
A.
,
Moon
,
D.
,
Ha
,
J.
,
Kang
,
S.
, and
Lee
,
W.
,
2020
, “
Modman: An Advanced Reconfigurable Manipulator System With Genderless Connector and Automatic Kinematic Modeling Algorithm
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4225
4232
.
3.
Campos
,
T.
,
Inala
,
J. P.
,
Solar-Lezama
,
A.
, and
Kress-Gazit
,
H.
,
2019
, “
Task-Based Design of Ad-hoc Modular Manipulators
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
6058
6064
.
4.
Valente
,
A.
,
2016
, “
Reconfigurable Industrial Robots: A Stochastic Programming Approach for Designing and Assembling Robotic Arms
,”
Rob. Comput.-Integr. Manuf.
,
41
, pp.
115
126
.
5.
Chen
,
I.-M.
, and
Yim
,
M.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Cham
, pp.
531
542
.
6.
Acaccia
,
G.
,
Bruzzone
,
L.
, and
Razzoli
,
R.
,
2008
, “
A Modular Robotic System for Industrial Applications
,”
Assembly Autom.
,
28
(
2
), pp.
151
162
.
7.
Liu
,
S. B.
, and
Althoff
,
M.
,
2020
, “
Optimizing Performance in Automation Through Modular Robots
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, IEEE, pp.
4044
4050
.
8.
Li
,
Y.
,
Lu
,
Z.
,
Zhou
,
F.
,
Dong
,
B.
,
Liu
,
K.
, and
Li
,
Y.
,
2019
, “
Decentralized Trajectory Tracking Control for Modular and Reconfigurable Robots With Torque Sensor: Adaptive Terminal Sliding Control-Based Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
6
), p.
061003
.
9.
Ramos
,
F.
,
Vázquez
,
A. S.
,
Fernández
,
R.
, and
Olivares-Alarcos
,
A.
,
2018
, “
Ontology Based Design, Control and Programming of Modular Robots
,”
Integr. Comput.-Aided Eng.
,
25
(
2
), pp.
1
20
.
10.
Dogra
,
A.
,
Sekhar Padhee
,
S.
, and
Singla
,
E.
,
2021
, “
An Optimal Architectural Design for Unconventional Modular Reconfigurable Manipulation System
,”
ASME J. Mech. Des.
,
143
(
6
), p.
063303
.
11.
Singh
,
S.
, and
Singla
,
E.
,
2016
, “
Realization of Task-Based Designs Involving Dh Parameters: a Modular Approach
,”
Intell. Serv. Rob.
,
9
(
3
), pp.
289
296
.
12.
Stravopodis
,
N.
, and
Moulianitis
,
V.
,
2020
, “
Rectilinear Tasks Optimization of a Modular Serial Metamorphic Manipulator
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011001
.
13.
Brandstötter
,
M.
,
Angerer
,
A.
, and
Hofbaur
,
M.
,
2015
, “
The Curved Manipulator (Cuma-Type Arm): Realization of a Serial Manipulator With General Structure in Modular Design
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
403
409
.
14.
Whitman
,
J.
, and
Choset
,
H.
,
2018
, “
Task-Specific Manipulator Design and Trajectory Synthesis
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
301
308
.
15.
Kereluk
,
J. A.
, and
Emami
,
M. R.
,
2017
, “
Task-Based Optimization of Reconfigurable Robot Manipulators
,”
Adv. Rob.
,
31
(
16
), pp.
836
850
.
16.
Moulianitis
,
V. C.
,
Synodinos
,
A. I.
,
Valsamos
,
C. D.
, and
Aspragathos
,
N. A.
,
2016
, “
Task-Based Optimal Design of Metamorphic Service Manipulators
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061011
.
17.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures—A Comprehensive Literature Survey
,”
J. Intell. Rob. Syst.
,
77
(
3–4
), pp.
547
570
.
18.
Aghili
,
F.
, and
Parsa
,
K.
,
2009
, “
A Reconfigurable Robot With Lockable Cylindrical Joints
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
785
797
.
19.
Chocron
,
O.
,
2008
, “
Evolutionary Design of Modular Robotic Arms
,”
Robotica
,
26
(
3
), pp.
323
330
.
20.
Icer
,
E.
,
Hassan
,
H. A.
,
El-Ayat
,
K.
, and
Althoff
,
M.
,
2017
, “
Evolutionary Cost-Optimal Composition Synthesis of Modular Robots Considering a Given Task
,”
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
3562
3568
.
21.
Singh
,
S.
,
Singla
,
A.
, and
Singla
,
E.
,
2018
, “
Modular Manipulators for Cluttered Environments: A Task-Based Configuration Design Approach
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051010
.
22.
Gupta
,
V.
,
Saha
,
S. K.
, and
Chaudhary
,
H.
,
2019
, “
Optimum Design of Serial Robots
,”
ASME J. Mech. Des.
,
141
(
8
), p.
082303
.
23.
van der Wijk
,
V.
,
Herder
,
J. L.
, and
Demeulenaere
,
B.
,
2009
, “
Comparison of Various Dynamic Balancing Principles Regarding Additional Mass and Additional Inertia
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041006
.
24.
Arakelian
,
V.
,
Le Baron
,
J.-P.
, and
Mottu
,
P.
,
2011
, “
Torque Minimisation of the 2-dof Serial Manipulators Based on Minimum Energy Consideration and Optimum Mass Redistribution
,”
Mechatronics
,
21
(
1
), pp.
310
314
.
25.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Finistauri
,
A. D.
,
2010
, “
Module-Based Static Structural Design of a Modular Reconfigurable Robot
,”
ASME J. Mech. Des.
,
132
(
1
), p.
014501
.
26.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Lin
,
Y.
,
2015
, “
A Combinatorial Search Method for the Quasi-Static Payload Capacity of Serial Modular Reconfigurable Robots
,”
Mech. Mach. Theory.
,
92
, pp.
240
256
.
27.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Chen
,
T.
,
2017
, “
A Pose-Based Structural Dynamic Model Updating Method for Serial Modular Robots
,”
Mech. Syst. Signal. Process.
,
85
, pp.
530
555
.
28.
Hu
,
M.
,
Wang
,
H.
, and
Pan
,
X.
,
2020
, “
Multi-Objective Global Optimum Design of Collaborative Robots
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1547
1561
.
29.
Srinivas
,
G. L.
, and
Javed
,
A.
,
2020
, “
Topology Optimization of Rigid-Links for Industrial Manipulator Considering Dynamic Loading Conditions
,”
Mech. Mach. Theory.
,
153
, p.
103979
.
30.
Stöckli
,
F.
, and
Shea
,
K.
,
2020
, “
Topology Optimization of Rigid-Body Systems Considering Collision Avoidance
,”
J. Mech. Des.
,
142
(
8
), p.
081705
.
31.
Wang
,
X.
,
Zhang
,
D.
,
Zhao
,
C.
,
Zhang
,
P.
,
Zhang
,
Y.
, and
Cai
,
Y.
,
2019
, “
Optimal Design of Lightweight Serial Robots by Integrating Topology Optimization and Parametric System Optimization
,”
Mech. Mach. Theory.
,
132
, pp.
48
65
.
32.
Briot
,
S.
, and
Goldsztejn
,
A.
,
2018
, “
Topology Optimization of Industrial Robots: Application to a Five-Bar Mechanism
,”
Mech. Mach. Theory.
,
120
, pp.
30
56
.
33.
Yin
,
H.
,
Huang
,
S.
,
He
,
M.
, and
Li
,
J.
,
2017
, “
A Unified Design for Lightweight Robotic Arms Based on Unified Description of Structure and Drive Trains
,”
Int. J. Adv. Rob. Syst.
,
14
(
4
), p.
1729881417716383
.
34.
Kim
,
B. J.
,
Yun
,
D. K.
,
Lee
,
S. H.
, and
Jang
,
G. -W.
,
2016
, “
Topology Optimization of Industrial Robots for System-Level Stiffness Maximization by Using Part-Level Metamodels
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
1061
1071
.
35.
Brandstötter
,
M.
,
Gallina
,
P.
,
Seriani
,
S.
, and
Hofbaur
,
M.
,
2018
, “
Task-Dependent Structural Modifications on Reconfigurable General Serial Manipulators
,”
International Conference on Robotics in Alpe-Adria Danube Region
,
Patras, Greece
,
June 6–8
, Springer, pp.
316
324
.
36.
Yihun
,
Y.
,
Bosworth
,
K. W.
, and
Perez-Gracia
,
A.
,
2014
, “
Link-Based Performance Optimization of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122303
.
37.
Kot
,
T.
,
Bobovskỳ
,
Z.
,
Brandstötter
,
M.
,
Krys
,
V.
,
Virgala
,
I.
, and
Novák
,
P.
,
2021
, “
Finding Optimal Manipulator Arm Shapes to Avoid Collisions in a Static Environment
,”
Appl. Sci.
,
11
(
1
), p.
64
.
38.
Pastor
,
R.
,
Bobovskỳ
,
Z.
,
Huczala
,
D.
, and
Grushko
,
S.
,
2021
, “
Genetic Optimization of a Manipulator: Comparison Between Straight, Rounded, and Curved Mechanism Links
,”
Appl. Sci.
,
11
(
6
), p.
2471
.
39.
Dogra
,
A.
,
Padhee
,
S. S.
, and
Singla
,
E.
,
2021
, “
Optimal Architecture Planning of Modules for Reconfigurable Manipulators
,”
Robotica
, pp.
1
15
.
40.
Chaudhary
,
H.
, and
Saha
,
S. K.
,
2008
,
Dynamics and Balancing of Multibody Systems
, Vol.
37
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
41.
Ibrahim
,
Z.
,
2004
, “Mastering CAD/CAM” (
Zeid- McGraw-Hill Series in Mechanical Engineering
).
42.
Dogra
,
A.
,
Mahna
,
S.
,
Padhee
,
S. S.
, and
Singla
,
E.
,
2021
, “
Unified Modeling of Unconventional Modular and Reconfigurable Manipulation System
,”
arXiv preprint
.
You do not currently have access to this content.