Abstract

In recent years, the field of soft robotics has received considerable attention due to its potential in increasing the safety of human-robot interaction. The design of soft robots possesses great challenges. For example, the longstanding challenge of co-design morphology and actuation makes designing them by hand a trial-and-error process. Earlier work presented by the authors proposes a computational design synthesis (CDS) method for the automated design of virtual, soft locomotion robot morphologies. This work extends the CDS method for morphologies with the automated co-design of actuation. Two methods are considered. In the first method, the actuation of designs is described by parametric actuation curves (PACs) that model feedforward actuation patterns. For every morphology in the design process, a set of PACs is optimized that assumes symmetric and cyclic gaits. The second method, soft actor-critic (SAC) reinforcement learning, removes this assumption as well as models feedback control for comparison. Adding PAC optimization to the CDS method is shown to improve the performance of the resulting designs and to achieve better results within less design iterations. SAC is, however, deemed less effective, due to the need for design specific problem tuning for each new morphology. The SAC experiments also show that the best found soft robot gaits are symmetric and cyclic, although this is not a constraint in the SAC problem formulation, thus verifying the assumptions made in the PAC formulation. To validate the search space modeled in the co-design CDS method, a state-of-the-art soft robot is replicated and compared.

References

1.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2009
, “
Requirements for Safe Robots: Measurements, Analysis and New Insights
,”
Int. J. Robot. Res.
,
28
(
11–12
), pp.
1507
1527
.
2.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
44
), pp.
18809
18814
.
3.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
2047
2053
.
4.
Seibel
,
A.
, and
Schiller
,
L.
,
2018
, “
Systematic Engineering Design Helps Creating New Soft Machines
,”
Robot. Biomim.
,
5
(
5
), pp.
1
10
.
5.
van Diepen
,
M.
, and
Shea
,
K.
,
2019
, “
A Spatial Grammar Method for the Computational Design Synthesis of Virtual Soft Locomotion Robots
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101402
.
6.
Cheney
,
N.
,
MacCurdy
,
R.
,
Clune
,
J.
, and
Lipson
,
H.
,
2013
, “
Unshackling Evolution: Evolving Soft Robots With Multiple Materials and a Powerful Generative Encoding
,”
Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation—GECCO‘13
,
Amsterdam, The Netherlands
,
July 6–10
, p.
167
.
7.
Sims
,
K.
,
1994
, “
Evolving Virtual Creatures
,”
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1994, SIGGRAPH
,
Orlando, FL
,
July 24–29
, pp.
15
22
.
8.
Lipson
,
H.
, and
Pollack
,
J. B.
,
2000
, “
Automatic Design and Manufacture of Robotic Lifeforms
,”
Nature
,
406
(
August
), pp.
974
978
.
9.
Lund
,
H.
,
Hallam
,
J.
, and
Lee
,
W.-P. L. W.-P.
,
1997
, “
Evolving Robot Morphology
,”
Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ‘97).
,
Indianapolis, IN
,
Apr. 13–16
.
10.
Stump
,
G. M.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C.
,
2019
, “
Spatial Grammar-Based Recurrent Neural Network for Design Form and Behavior Optimization
,”
ASME J. Mech. Des.
,
141
(
12
), p.
124501
.
11.
Ishige
,
M.
,
Umedachi
,
T.
,
Taniguchi
,
T.
, and
Kawahara
,
Y.
,
2019
, “
Exploring Behaviors of Caterpillar-Like Soft Robots With a Central Pattern Generator-Based Controller and Reinforcement Learning
,”
Soft Robot.
,
6
(
5
), pp.
579
594
.
12.
Rieffel
,
J.
,
Rife
,
J.
,
Trimmer
,
B.
, and
Saunders
,
F.
,
2009
, “
Evolving Soft Robotic Locomotion in PhysX
,”
Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers
,
Montreal, QC, Canada
,
July 8–12
, pp.
2499
2504
.
13.
Andrew Spielberg
,
W. M.
,
Zhao
,
A.
,
Du
,
T.
,
Hu
,
Y.
, and
Rus
,
D.
,
2019
, “
Learning-In-The-Loop Optimization: End-to-End Control and Co-Design of Soft Robots Through Learned Deep Latent Representations
,”
Conference on Neural Information Processing Systems (NeurIPS)
,
Vancouver, Canada
,
Dec. 8–14
, pp.
8284
8294
.
14.
Hu
,
Y.
,
Liu
,
J.
,
Spielberg
,
A.
,
Tenenbaum
,
J. B.
,
Freeman
,
W. T.
,
Wu
,
J.
,
Rus
,
D.
, and
Matusik
,
W.
,
2019
, “
Chain-Queen: A Real-Time Differentiable Physical Simulator for Soft Robotics
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
6265
6271
.
15.
Rieffel
,
J.
,
Knox
,
D.
,
Smith
,
S.
, and
Trimmer
,
B.
,
2013
, “
Growing and Evolving Soft Robots
,”
Artif. Life
,
20
(
1
), pp.
143
162
.
16.
Zhao
,
A.
,
Xu
,
J.
,
Konakovíc-Lukovíc
,
M.
,
Hughes
,
J.
,
Spielberg
,
A.
,
Rus
,
D.
, and
Matusik
,
W.
,
2020
, “
Robogrammar: Graph Grammar for Terrain-Optimized Robot Design
,”
ACM Trans. Graph.
,
39
(
6
), pp.
1
16
.
17.
Couman
,
E.
,
2015
, “
Bullet Physics Simulation.
ACM SIGGRAPH 2015 Courses
, p.
1
.
18.
Copas
,
J.
,
1984
, “
On the Unimodality of the Likelihood Function for the Cauchy Distribution
,”
Biometrika
,
62
(
3
), pp.
701
704
.
19.
Haarnoja
,
T.
,
Zhou
,
A.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2018
, “
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
,”
International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
.
20.
Haarnoja
,
T.
,
2018
, Github Soft Actor-Critic, https://github.com/haarnoja/sac.
21.
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M., and Whitesides, G. M.,
2011
. “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
51
), pp.
20400
20403
.
22.
van Diepen
,
M.
,
2020
, “Computational Design Synthesis for the Co-Design of Morphology and Actuation of Soft Robots for Locomotion,” PhD thesis, ETH Zurich, Switzerland.
You do not currently have access to this content.