Abstract

Integration of machine learning (ML) with topology optimization (TO) has been attempted in many works. However, most works employ ML in a data-driven paradigm, which requires well-defined training data, and the generalization is questionable. This paper aims to utilize the optimization capability of ML for high-resolution structure design. Rather than learning a priori, the neural network (NN) acts as an optimizer in the TO problem. Specifically, the density field is reparametrized into a function representation-based microstructure. The level surface is the design parameter that controls the microstructure’s volume and shape. We reformulate the multiscale TO problem with this new design variable. NN is utilized to map the microstructure parameters into the design domain. The input of NN is spatial coordinates, and the output is the microstructure level surface value. The network parameters are optimized through backpropagation, which leads to optimal design. In this framework, predicting the microstructure’s parameter at any arbitrary point is possible by taking advantage of the mesh size-independent continuous NN. Once the network is optimized, the resolution of structures can be increased accordingly without increasing computational cost. This is crucial to address the sharp transition problem of adjacent microstructures–a common one in the multiscale structure design. Several benchmarks have been studied to validate the proposed method’s effectiveness. Experimental results demonstrate that our work yields high-resolution designs with smooth transitions and improves the overall performance of final structures compared to previous methods.

References

1.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
3.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
Compt. Rendus Math.
,
334
(
12
), pp.
1125
1130
.
4.
Sokołowski
,
J.
, and
Żochowski
,
A.
,
2001
, “
Topological Derivatives of Shape Functionals for Elasticity Systems
,”
Optimal Control of Complex Structures
,
Birkhäuser, Basel
,
June 4–10
, Springer, pp.
231
244
.
5.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization - Homogenization Theory for Media with Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
6.
Wu
,
J.
,
Dick
,
C.
, and
Westermann
,
R.
,
2015
, “
A System for High-Resolution Topology Optimization
,”
IEEE Trans. Vis. Comput. Graph.
,
22
(
3
), pp.
1195
1208
.
7.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
.
8.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-scale Structures: A Review
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1455
1480
.
9.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph. (TOG)
,
36
(
4
), p.
1
.
10.
Ferrer
,
A.
,
Cante
,
J. C.
,
Hernández
,
J.
, and
Oliver
,
J.
,
2018
, “
Two-Scale Topology Optimization in Computational Material Design: An Integrated Approach
,”
Int. J. Numer. Methods Eng.
,
114
(
3
), pp.
232
254
.
11.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
1118
1135
.
12.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
(
Part A
), pp.
81
94
.
13.
Li
,
D.
,
Dai
,
N.
,
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
.
14.
Xie
,
X.
,
Wang
,
S.
,
Wang
,
Y.
,
Jiang
,
N.
,
Zhao
,
W.
, and
Xu
,
M.
,
2020
, “
Truncated Hierarchical B-Spline-Based Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
62
(
1
), pp.
83
105
.
15.
Qian
,
X.
,
2013
, “
Topology Optimization in B-Spline Space
,”
Comput. Methods Appl. Mech. Eng.
,
265
, pp.
15
35
.
16.
Zhang
,
J. Z.
,
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2020
, “
Stress-Constrained Design of Functionally Graded Lattice Structures With Spline-Based Dimensionality Reduction
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091702
.
17.
Hoyer
,
S.
,
Sohl-Dickstein
,
J.
, and
Greydanus
,
S.
,
2019
, “
Neural Reparameterization Improves Structural Optimization
.” arXiv preprint arXiv:1909.04240.
18.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
19.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
20.
Zhang
,
Y.
,
Chi
,
H.
,
Chen
,
B.
,
Tang
,
T. L. E.
,
Mirabella
,
L.
,
Song
,
L.
, and
Paulino
,
G. H.
,
2021
, “
Speeding Up Computational Morphogenesis With Online Neural Synthetic Gradients
,”
International Joint Conference on Neural Networks (IJCNN)
,
Virtual Event
,
July 18–22
, IEEE, pp.
1
8
.
21.
Ulu
,
E.
,
Zhang
,
R.
, and
Kara
,
L. B.
,
2016
, “
A Data-Driven Investigation and Estimation of Optimal Topologies Under Variable Loading Configurations
,”
Comput. Methods Biomech. Biomed. Eng.: Imag. Vis.
,
4
(
2
), pp.
61
72
.
22.
Márquez-Neila
,
P.
,
Salzmann
,
M.
, and
Fua
,
P.
,
2017
, “
Imposing Hard Constraints on Deep Networks: Promises and Limitations
.” arXiv preprint arXiv:1706.02025.
23.
Jais
,
I. K. M.
,
Ismail
,
A. R.
, and
Nisa
,
S. Q.
,
2019
, “
Adam Optimization Algorithm for Wide and Deep Neural Network
,”
Knowl. Eng. Data Sci.
,
2
(
1
), pp.
41
46
.
24.
Kervadec
,
H.
,
Dolz
,
J.
,
Yuan
,
J.
,
Desrosiers
,
C.
,
Granger
,
E.
, and
Ayed
,
I. B.
,
2019
, “
Constrained Deep Networks: Lagrangian Optimization Via Log-Barrier Extensions
.” arXiv preprint arXiv:1904.04205.
25.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
.” arXiv preprint arXiv:1412.6980.
26.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
Tounn: Topology Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1135
1149
.
27.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2022
, “
Multi-scale Topology Optimization With Neural Network-Assisted Optimizer
,”
Proceedings of the IDETC/CIE, St. Louis, MO, Aug. 14–17
, ASME Paper No. DETC2022/CIE-89538.
28.
Zhou
,
Q.
,
Panetta
,
J.
, and
Zorin
,
D.
,
2013
, “
Worst-Case Structural Analysis.
ACM Trans. Graph.
,
32
(
4
), pp.
137
1
.
29.
Panetta
,
J.
,
Rahimian
,
A.
, and
Zorin
,
D.
,
2017
, “
Worst-Case Stress Relief for Microstructures
,”
ACM Trans. Graph. (TOG)
,
36
(
4
), pp.
1
16
.
30.
Gross
,
A.
,
Pantidis
,
P.
,
Bertoldi
,
K.
, and
Gerasimidis
,
S.
,
2019
, “
Correlation Between Topology and Elastic Properties of Imperfect Truss-Lattice Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
577
598
.
31.
Mohri
,
M.
,
Rostamizadeh
,
A.
, and
Talwalkar
,
A.
,
2018
,
Foundations of Machine Learning
,
MIT Press
,
Cambridge, MA
.
32.
Kollmann
,
H. T.
,
Abueidda
,
D. W.
,
Koric
,
S.
,
Guleryuz
,
E.
, and
Sobh
,
N. A.
,
2020
, “
Deep Learning for Topology Optimization of 2D Metamaterials
,”
Mater. Des.
,
196
, p.
109098
.
33.
Abueidda
,
D. W.
,
Koric
,
S.
, and
Sobh
,
N. A.
,
2020
, “
Topology Optimization of 2D Structures with Nonlinearities Using Deep Learning
,”
Comput. Struct.
,
237
, p.
106283
.
34.
Lei
,
X.
,
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
, and
Guo
,
X.
,
2019
, “
Machine Learning-Driven Real-time Topology Optimization Under Moving Morphable Component-Based Framework
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011004
.
35.
Chi
,
H.
,
Zhang
,
Y.
,
Tang
,
T. L. E.
,
Mirabella
,
L.
,
Dalloro
,
L.
,
Song
,
L.
, and
Paulino
,
G. H.
,
2021
, “
Universal Machine Learning for Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
375
, p.
112739
.
36.
Kallioras
,
N. A.
,
Kazakis
,
G.
, and
Lagaros
,
N. D.
,
2020
, “
Accelerated Topology Optimization by Means of Deep Learning
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1185
1212
.
37.
Efremov
,
S.
,
Martínez
,
J.
, and
Lefebvre
,
S.
,
2021
, “
3D Periodic Cellular Materials With Tailored Symmetry and Implicit Grading
,”
Comput.-Aided Des.
,
140
, p.
103086
.
38.
Borrvall
,
T.
, and
Petersson
,
J.
,
2001
, “
Topology Optimization Using Regularized Intermediate Density Control
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
37–38
), pp.
4911
4928
.
39.
Soyarslan
,
C.
,
Bargmann
,
S.
,
Pradas
,
M.
, and
Weissmüller
,
J.
,
2018
, “
3D Stochastic Bicontinuous Microstructures: Generation, Topology and Elasticity
,”
Acta Mater.
,
149
, pp.
326
340
.
40.
Wu
,
J.
,
Wang
,
W.
, and
Gao
,
X.
,
2019
, “
Design and Optimization of Conforming Lattice Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
27
(
1
), pp.
43
56
.
41.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2021
, “
Lattice Structure Optimization With Orientation-Dependent Material Properties
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091708
.
42.
Wang
,
J.
, and
Rai
,
R.
,
2020
, “
Generative Design of Conformal Cubic Periodic Cellular Structures Using a Surrogate Model-Based Optimisation Scheme
,”
Int. J. Prod. Res.
,
60
(
5
), pp.
1
20
.
43.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2021
, “
Two-Scale Topology Optimization With Parameterized Cellular Structures
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
85376
,
American Society of Mechanical Engineers
, Paper No.
V002T02A046
.
44.
Alzahrani
,
M.
,
Choi
,
S.-K.
, and
Rosen
,
D. W.
,
2015
, “
Design of Truss-Like Cellular Structures Using Relative Density Mapping Method
,”
Mater. Des.
,
85
, pp.
349
360
.
45.
Aage
,
N.
,
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
.
46.
Wang
,
L.
,
Chan
,
Y.-C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-Driven Metamaterial Design With Laplace–Beltrami Spectrum As ‘Shape-DNA’
,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2613
2628
.
47.
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “
METASET: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031707
.
48.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
.
49.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3D Printing
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), pp.
1
13
.
50.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148
, pp.
157
168
.
51.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
npj Comput. Mater.
,
6
(
1
), pp.
1
10
.
52.
Hsieh
,
M.-T.
,
Endo
,
B.
,
Zhang
,
Y.
,
Bauer
,
J.
, and
Valdevit
,
L.
,
2019
, “
The Mechanical Response of Cellular Materials With Spinodal Topologies
,”
J. Mech. Phys. Solids
,
125
, pp.
401
419
.
53.
Meeks III
,
W.
, and
Pérez
,
J.
,
2011
, “
The Classical Theory of Minimal Surfaces
,”
Bull. Am. Math. Soc.
,
48
(
3
), pp.
325
407
.
54.
Von Schnering
,
H.
, and
Nesper
,
R.
,
1991
, “
Nodal Surfaces of Fourier Series: Fundamental Invariants of Structured Matter
,”
Z. Phys. B Condensed Matter
,
83
(
3
), pp.
407
412
.
55.
Arora
,
J.
,
2004
,
Introduction to Optimum Design
,
Elsevier
,
Netherlands
.
56.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
57.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2018
, “
Automatic Differentiation in Machine Learning: A Survey
,”
J. Mach. Learn. Res.
,
18
, pp.
1
43
.
58.
Shiakolas
,
P.
,
Nambiar
,
R.
,
Lawrence
,
K.
, and
Rogers
,
W.
,
1992
, “
Closed-Form Stiffness Matrices for the Linear Strain and Quadratic Strain Tetrahedron Finite Elements
,”
Comput. Struct.
,
45
(
2
), pp.
237
242
.
59.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
International Conference on Artificial Intelligence and Statistics
,
Sardinia, Italy
,
May 13–15
, pp.
249
256
.
60.
Rastegarzadeh
,
S.
,
Muthusamy
,
S.
, and
Huang
,
J.
,
2022
, “
Mechanical Profile and 3D Printability of Cellular Structures
,”
Proceedings of the MSEC
,
West Lafayette, IN
,
June 27–July 1
,
ASME Paper No. MSEC2022-
85541
.
You do not currently have access to this content.