Abstract
This paper introduces a novel strut-based lattice structure that is called G-Lattices and a method for their generative synthesis. Given additive manufacturing (AM), user and geometrical constraints, G-Lattices can automatically be generated via a particle tracing algorithm, which places/moves particles in a lattice unit cell. As a proof of concept, several G-Lattices are manufactured through an AM machine. Additionally, the proposed G-Lattice synthesis method is customized for the models under vertical loading, which are validated through finite element method experiments and have greater strength over volume ratios compared to conventional lattice structures.
References
1.
Alomar
, Z.
, and Concli
, F.
, 2020
, “A Review of the SLM Lattice Structures and Their Numerical Models
,” Adv. Eng. Mater.
, 22
(12
), p. 2000611
. 2.
Monteiro
, J.
, Sardinha
, M.
, Alves
, F.
, Ribeiro
, A.
, Reis
, L.
, Deus
, A.
, Leite
, M.
, and Vaz
, M. F.
, 2021
, “Evaluation of the Effect of Core Lattice Topology on the Properties of Sandwich Panels Produced by Additive Manufacturing
,” Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
, 235
(6
), pp. 1312
–1324
. 3.
Seharing
, A.
, Azman
, A. H.
, and Abdullah
, S.
, 2020
, “A Review on Integration of Lightweight Gradient Lattice Structures in Additive Manufacturing Parts
,” Adv. Mech. Eng.
, 12
(6
), p. 1687814020916951
. 4.
Abdulhadi
, H.
, and Mian
, A.
, 2019
, “Effect of Strut Length and Orientation on Elastic Mechanical Response of Modified Body-Centered Cubic Lattice Structures
,” Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
, 233
(11
), p. 146442071984108
.5.
Zhu
, S.
, Ma
, L.
, Wang
, B.
, Hu
, J.
, and Zhou
, Z.
, 2018
, “Lattice Materials Composed by Curved Struts Exhibit Adjustable Macroscopic Stress–Strain Curves
,” Mater. Today Commun.
, 14
, pp. 273
–281
. 6.
Chen
, Y.
, Li
, T.
, Scarpa
, F.
, and Wang
, L.
, 2017
, “Lattice Metamaterials With Mechanically Tunable Poisson’s Ratio for Vibration Control
,” Phys. Rev. Appl.
, 7
(2
), p. 024012
. 7.
Tao
, W.
, and Leu
, M.
, 2016
, “Design of Lattice Structure for Additive Manufacturing
,” International Symposium on Flexible Automation (ISFA)
, Cleveland, OH
, Aug. 1–3
, pp. 325
–332
.8.
Al-Saedi
, D. S.
, Masood
, S.
, Faizan-Ur-Rab
, M.
, Alomarah
, A.
, and Ponnusamy
, P.
, 2018
, “Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM
,” Mater. Des.
, 144
, pp. 32
–44
. 9.
Smith
, M.
, Guan
, Z.
, and Cantwell
, W.
, 2013
, “Finite Element Modelling of the Compressive Pesponse of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,” Int. J. Mech. Sci.
, 67
, pp. 28
–41
.10.
Mahshid
, R.
, Hansen
, H. N.
, and Højbjerre
, K. L.
, 2016
, “Strength Analysis and Modeling of Cellular Lattice Structures Manufactured Using Selective Laser Melting for Tooling Applications
,” Mater. Des.
, 104
, pp. 276
–283
. 11.
Pan
, C.
, Han
, Y.
, and Lu
, J.
, 2020
, “Design and Optimization of Lattice Structures: A Review
,” Appl. Sci.
, 10
(18
), p. 6374
. 12.
Maskery
, I.
, Hussey
, A.
, Panesar
, A.
, Aremu
, A.
, Tuck
, C.
, Ashcroft
, I.
, and Hague
, R.
, 2017
, “An Investigation Into Reinforced and Functionally Graded Lattice Structures
,” J. Cell. Plastics
, 53
(2
), pp. 151
–165
. 13.
Lebaal
, N.
, Zhang
, Y.
, Demoly
, F.
, Roth
, S.
, Gomes
, S.
, and Bernard
, A.
, 2019
, “Optimised Lattice Structure Configuration for Additive Manufacturing
,” CIRP Ann.
, 68
(1
), pp. 117
–120
. 14.
Alghamdi
, A.
, Downing
, D.
, Tino
, R.
, Almalki
, A.
, Maconachie
, T.
, Lozanovski
, B.
, Brandt
, M.
, Qian
, M.
, and Leary
, M.
, 2021
, “Buckling Phenomena in AM Lattice Strut Elements: A Design Tool Applied to Ti-6Al-4V LB-PBF
,” Mater. Des.
, 208
, p. 109892
. 15.
Cuan-Urquizo
, E.
, Martínez
, M.
, Crespo
, S.
, Gómez-Espinosa
, A.
, Olvera-Silva
, O.
, and Roman-Flores
, A.
, 2019
, “Additive Manufacturing and Mechanical Properties of Lattice-Curved Structures
,” Rapid Prototyp. J.
, 25
, pp. 895
–903
. 16.
Wang
, H.
, Chen
, Y.
, and Rosen
, D. W.
, 2005
, “A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA
, Sept. 24–28
, pp. 421
–427
.17.
Vongbunyong
, S.
, and Kara
, S.
, 2017
, “Rapid Generation of Uniform Cellular Structure by Using Prefabricated Unit Cells
,” Int. J. Comput. Integr. Manuf.
, 30
(8
), pp. 792
–804
. 18.
Tang
, Y.
, Dong
, G.
, and Zhao
, Y.
, 2019
, “A Hybrid Geometric Modeling Method for Lattice Structures Fabricated by Additive Manufacturing
,” Int. J. Adv. Manuf. Technol.
, 102
(9
), pp. 4011
–4030
. 19.
Aremu
, A.
, Brennan-Craddock
, J.
, Panesar
, A.
, Ashcroft
, I.
, Hague
, R.
, Wildman
, R.
, and Tuck
, C.
, 2017
, “A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,” Addit. Manuf.
, 13
, pp. 1
–13
.20.
Pasko
, A.
, Fryazinov
, O.
, Vilbrandt
, T.
, Fayolle
, P.-A.
, and Adzhiev
, V.
, 2011
, “Procedural Function-Based Modelling of Volumetric Microstructures
,” Graph. Models
, 73
(5
), pp. 165
–181
. 21.
Gupta
, A.
, Kurzeja
, K.
, Rossignac
, J.
, Allen
, G.
, Kumar
, P. S.
, and Musuvathy
, S.
, 2019
, “Programmed-Lattice Editor and Accelerated Processing of Parametric Program-Representations of Steady Lattices
,” Comput. Aided Des.
, 113
, pp. 35
–47
. 22.
Liu
, Y.
, Zhuo
, S.
, Xiao
, Y.
, Zheng
, G.
, Dong
, G.
, and Zhao
, Y. F.
, 2020
, “Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,” ASME J. Mech. Des.
, 142
(9
), p. 091705
. 23.
Zhang
, J. Z.
, Sharpe
, C.
, and Seepersad
, C. C.
, 2020
, “Stress-Constrained Design of Functionally Graded Lattice Structures With Spline-Based Dimensionality Reduction
,” ASME J. Mech. Des.
, 142
(9
), p. 091702
. 24.
Dong
, G.
, Tang
, Y.
, and Zhao
, Y. F.
, 2017
, “A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,” ASME J. Mech. Des.
, 139
(10
), p. 100906
. 25.
Syam
, W. P.
, Jianwei
, W.
, Zhao
, B.
, Maskery
, I.
, Elmadih
, W.
, and Leach
, R.
, 2018
, “Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,” Precis. Eng.
, 52
, pp. 494
–506
. 26.
Sharpe
, C.
, and Seepersad
, C. C.
, 2021
, “Lattice Structure Optimization With Orientation-Dependent Material Properties
,” ASME J. Mech. Des.
, 143
(9
), p. 091708
. 27.
Zhang
, H.
, Luo
, Y.
, and Kang
, Z.
, 2018
, “Bi-Material Microstructural Design of Chiral Auxetic Metamaterials Using Topology Optimization
,” Compos. Struct.
, 195
, pp. 232
–248
. 28.
Jiang
, J.
, Xu
, X.
, and Stringer
, J.
, 2019
, “Effect of Extrusion Temperature on Printable Threshold Overhang in Additive Manufacturing
,” Procedia CIRP
, 81
, pp. 1376
–1381
. 29.
Bai
, L.
, Yi
, C.
, Chen
, X.
, Sun
, Y.
, and Zhang
, J.
, 2019
, “Effective Design of the Graded Strut of BCC Lattice Structure for Improving Mechanical Properties
,” Materials
, 12
(13
), p. 2192
. 30.
Gunpinar
, E.
, and Gunpinar
, S.
, 2018
, “A Shape Sampling Technique Via Particle Tracing for CAD Models
,” Graph. Models
, 96
, pp. 11
–29
. 31.
Tasmektepligil
, A. A.
, and Gunpinar
, E.
, 2022
, “Splinelearner: Generative Learning System of Design Constraints for Models Represented Using B-spline Surfaces
,” Adv. Eng. Inform.
, 51
, p. 101478
. 32.
Raghavendra
, S.
, Molinari
, A.
, Fontanari
, V.
, Dallago
, M.
, Luchin
, V.
, Zappini
, G.
, and Benedetti
, M.
, 2020
, “Effect of Strut Cross Section and Strut Defect on Tensile Properties of Cubic Cellular Structure
,” Mater. Des. Process. Commun.
, 2
(5
), p. e118
.33.
Fang
, G.
, Zhang
, T.
, Zhong
, S.
, Chen
, X.
, Zhong
, Z.
, and Wang
, C. C. L.
, 2020
, “Reinforced FDM: Multi-Axis Filament Alignment With Controlled Anisotropic Strength
,” ACM Trans. Graph.
, 39
(6
), p. 204
.34.
Mazur
, M.
, Leary
, M.
, McMillan
, M.
, Sun
, S.
, Shidid
, D.
, and Brandt
, M.
, 2017
, Laser Additive Manufacturing
, M.
Brandt
, ed., Woodhead Publishing
, Sawston, Cambridge
, pp. 119
–161
.35.
Leary
, M.
, Mazur
, M.
, Williams
, H.
, Yang
, E.
, Alghamdi
, A.
, Lozanovski
, B.
, and Zhang
, X.
, 2018
, “Inconel 625 Lattice Structures Manufactured by Selective Laser Melting (SLM): Mechanical Properties, Deformation and Failure Modes
,” Mater. Des.
, 157
, pp. 179
–199
. 36.
Gunpinar
, E.
, and Cam
, S.
, 2022
, “4 and 5-Axis Additive Manufacturing of Parts Represented Using Free-Form 3d Curves
,” Graph. Models
, 120
, p. 101137
. 37.
Gunpinar
, E.
, and Armanfar
, A.
, 2022
, “Helical5AM: Five-Axis Parametrized Helical Additive Manufacturing
,” J. Mater. Process. Technol.
, 304
, p. 117565
. 38.
Gunpinar
, E.
, Coskun
, U. C.
, Ozsipahi
, M.
, and Gunpinar
, S.
, 2019
, “A Generative Design and Drag Coefficient Prediction System for Sedan Car Side Silhouettes Based on Computational Fluid Dynamics
,” Comput. Aided Des.
, 111
, pp. 65
–79
. 39.
Dogan
, K. M.
, Suzuki
, H.
, Gunpinar
, E.
, and Kim
, M. -S.
, 2019
, “A Generative Sampling System for Profile Designs With Shape Constraints and User Evaluation
,” Comput. Aided Des.
, 111
, pp. 93
–112
. Copyright © 2022 by ASME
You do not currently have access to this content.