Abstract

This paper introduces a novel strut-based lattice structure that is called G-Lattices and a method for their generative synthesis. Given additive manufacturing (AM), user and geometrical constraints, G-Lattices can automatically be generated via a particle tracing algorithm, which places/moves particles in a lattice unit cell. As a proof of concept, several G-Lattices are manufactured through an AM machine. Additionally, the proposed G-Lattice synthesis method is customized for the models under vertical loading, which are validated through finite element method experiments and have greater strength over volume ratios compared to conventional lattice structures.

References

1.
Alomar
,
Z.
, and
Concli
,
F.
,
2020
, “
A Review of the SLM Lattice Structures and Their Numerical Models
,”
Adv. Eng. Mater.
,
22
(
12
), p.
2000611
.
2.
Monteiro
,
J.
,
Sardinha
,
M.
,
Alves
,
F.
,
Ribeiro
,
A.
,
Reis
,
L.
,
Deus
,
A.
,
Leite
,
M.
, and
Vaz
,
M. F.
,
2021
, “
Evaluation of the Effect of Core Lattice Topology on the Properties of Sandwich Panels Produced by Additive Manufacturing
,”
Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
,
235
(
6
), pp.
1312
1324
.
3.
Seharing
,
A.
,
Azman
,
A. H.
, and
Abdullah
,
S.
,
2020
, “
A Review on Integration of Lightweight Gradient Lattice Structures in Additive Manufacturing Parts
,”
Adv. Mech. Eng.
,
12
(
6
), p.
1687814020916951
.
4.
Abdulhadi
,
H.
, and
Mian
,
A.
,
2019
, “
Effect of Strut Length and Orientation on Elastic Mechanical Response of Modified Body-Centered Cubic Lattice Structures
,”
Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
,
233
(
11
), p.
146442071984108
.
5.
Zhu
,
S.
,
Ma
,
L.
,
Wang
,
B.
,
Hu
,
J.
, and
Zhou
,
Z.
,
2018
, “
Lattice Materials Composed by Curved Struts Exhibit Adjustable Macroscopic Stress–Strain Curves
,”
Mater. Today Commun.
,
14
, pp.
273
281
.
6.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson’s Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
7.
Tao
,
W.
, and
Leu
,
M.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,”
International Symposium on Flexible Automation (ISFA)
,
Cleveland, OH
,
Aug. 1–3
, pp.
325
332
.
8.
Al-Saedi
,
D. S.
,
Masood
,
S.
,
Faizan-Ur-Rab
,
M.
,
Alomarah
,
A.
, and
Ponnusamy
,
P.
,
2018
, “
Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM
,”
Mater. Des.
,
144
, pp.
32
44
.
9.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W.
,
2013
, “
Finite Element Modelling of the Compressive Pesponse of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.
10.
Mahshid
,
R.
,
Hansen
,
H. N.
, and
Højbjerre
,
K. L.
,
2016
, “
Strength Analysis and Modeling of Cellular Lattice Structures Manufactured Using Selective Laser Melting for Tooling Applications
,”
Mater. Des.
,
104
, pp.
276
283
.
11.
Pan
,
C.
,
Han
,
Y.
, and
Lu
,
J.
,
2020
, “
Design and Optimization of Lattice Structures: A Review
,”
Appl. Sci.
,
10
(
18
), p.
6374
.
12.
Maskery
,
I.
,
Hussey
,
A.
,
Panesar
,
A.
,
Aremu
,
A.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
An Investigation Into Reinforced and Functionally Graded Lattice Structures
,”
J. Cell. Plastics
,
53
(
2
), pp.
151
165
.
13.
Lebaal
,
N.
,
Zhang
,
Y.
,
Demoly
,
F.
,
Roth
,
S.
,
Gomes
,
S.
, and
Bernard
,
A.
,
2019
, “
Optimised Lattice Structure Configuration for Additive Manufacturing
,”
CIRP Ann.
,
68
(
1
), pp.
117
120
.
14.
Alghamdi
,
A.
,
Downing
,
D.
,
Tino
,
R.
,
Almalki
,
A.
,
Maconachie
,
T.
,
Lozanovski
,
B.
,
Brandt
,
M.
,
Qian
,
M.
, and
Leary
,
M.
,
2021
, “
Buckling Phenomena in AM Lattice Strut Elements: A Design Tool Applied to Ti-6Al-4V LB-PBF
,”
Mater. Des.
,
208
, p.
109892
.
15.
Cuan-Urquizo
,
E.
,
Martínez
,
M.
,
Crespo
,
S.
,
Gómez-Espinosa
,
A.
,
Olvera-Silva
,
O.
, and
Roman-Flores
,
A.
,
2019
, “
Additive Manufacturing and Mechanical Properties of Lattice-Curved Structures
,”
Rapid Prototyp. J.
,
25
, pp.
895
903
.
16.
Wang
,
H.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2005
, “
A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
421
427
.
17.
Vongbunyong
,
S.
, and
Kara
,
S.
,
2017
, “
Rapid Generation of Uniform Cellular Structure by Using Prefabricated Unit Cells
,”
Int. J. Comput. Integr. Manuf.
,
30
(
8
), pp.
792
804
.
18.
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y.
,
2019
, “
A Hybrid Geometric Modeling Method for Lattice Structures Fabricated by Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9
), pp.
4011
4030
.
19.
Aremu
,
A.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R.
,
Wildman
,
R.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
20.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graph. Models
,
73
(
5
), pp.
165
181
.
21.
Gupta
,
A.
,
Kurzeja
,
K.
,
Rossignac
,
J.
,
Allen
,
G.
,
Kumar
,
P. S.
, and
Musuvathy
,
S.
,
2019
, “
Programmed-Lattice Editor and Accelerated Processing of Parametric Program-Representations of Steady Lattices
,”
Comput. Aided Des.
,
113
, pp.
35
47
.
22.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
.
23.
Zhang
,
J. Z.
,
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2020
, “
Stress-Constrained Design of Functionally Graded Lattice Structures With Spline-Based Dimensionality Reduction
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091702
.
24.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
25.
Syam
,
W. P.
,
Jianwei
,
W.
,
Zhao
,
B.
,
Maskery
,
I.
,
Elmadih
,
W.
, and
Leach
,
R.
,
2018
, “
Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,”
Precis. Eng.
,
52
, pp.
494
506
.
26.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2021
, “
Lattice Structure Optimization With Orientation-Dependent Material Properties
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091708
.
27.
Zhang
,
H.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2018
, “
Bi-Material Microstructural Design of Chiral Auxetic Metamaterials Using Topology Optimization
,”
Compos. Struct.
,
195
, pp.
232
248
.
28.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2019
, “
Effect of Extrusion Temperature on Printable Threshold Overhang in Additive Manufacturing
,”
Procedia CIRP
,
81
, pp.
1376
1381
.
29.
Bai
,
L.
,
Yi
,
C.
,
Chen
,
X.
,
Sun
,
Y.
, and
Zhang
,
J.
,
2019
, “
Effective Design of the Graded Strut of BCC Lattice Structure for Improving Mechanical Properties
,”
Materials
,
12
(
13
), p.
2192
.
30.
Gunpinar
,
E.
, and
Gunpinar
,
S.
,
2018
, “
A Shape Sampling Technique Via Particle Tracing for CAD Models
,”
Graph. Models
,
96
, pp.
11
29
.
31.
Tasmektepligil
,
A. A.
, and
Gunpinar
,
E.
,
2022
, “
Splinelearner: Generative Learning System of Design Constraints for Models Represented Using B-spline Surfaces
,”
Adv. Eng. Inform.
,
51
, p.
101478
.
32.
Raghavendra
,
S.
,
Molinari
,
A.
,
Fontanari
,
V.
,
Dallago
,
M.
,
Luchin
,
V.
,
Zappini
,
G.
, and
Benedetti
,
M.
,
2020
, “
Effect of Strut Cross Section and Strut Defect on Tensile Properties of Cubic Cellular Structure
,”
Mater. Des. Process. Commun.
,
2
(
5
), p.
e118
.
33.
Fang
,
G.
,
Zhang
,
T.
,
Zhong
,
S.
,
Chen
,
X.
,
Zhong
,
Z.
, and
Wang
,
C. C. L.
,
2020
, “
Reinforced FDM: Multi-Axis Filament Alignment With Controlled Anisotropic Strength
,”
ACM Trans. Graph.
,
39
(
6
), p.
204
.
34.
Mazur
,
M.
,
Leary
,
M.
,
McMillan
,
M.
,
Sun
,
S.
,
Shidid
,
D.
, and
Brandt
,
M.
,
2017
,
Laser Additive Manufacturing
,
M.
Brandt
, ed.,
Woodhead Publishing
,
Sawston, Cambridge
, pp.
119
161
.
35.
Leary
,
M.
,
Mazur
,
M.
,
Williams
,
H.
,
Yang
,
E.
,
Alghamdi
,
A.
,
Lozanovski
,
B.
, and
Zhang
,
X.
,
2018
, “
Inconel 625 Lattice Structures Manufactured by Selective Laser Melting (SLM): Mechanical Properties, Deformation and Failure Modes
,”
Mater. Des.
,
157
, pp.
179
199
.
36.
Gunpinar
,
E.
, and
Cam
,
S.
,
2022
, “
4 and 5-Axis Additive Manufacturing of Parts Represented Using Free-Form 3d Curves
,”
Graph. Models
,
120
, p.
101137
.
37.
Gunpinar
,
E.
, and
Armanfar
,
A.
,
2022
, “
Helical5AM: Five-Axis Parametrized Helical Additive Manufacturing
,”
J. Mater. Process. Technol.
,
304
, p.
117565
.
38.
Gunpinar
,
E.
,
Coskun
,
U. C.
,
Ozsipahi
,
M.
, and
Gunpinar
,
S.
,
2019
, “
A Generative Design and Drag Coefficient Prediction System for Sedan Car Side Silhouettes Based on Computational Fluid Dynamics
,”
Comput. Aided Des.
,
111
, pp.
65
79
.
39.
Dogan
,
K. M.
,
Suzuki
,
H.
,
Gunpinar
,
E.
, and
Kim
,
M. -S.
,
2019
, “
A Generative Sampling System for Profile Designs With Shape Constraints and User Evaluation
,”
Comput. Aided Des.
,
111
, pp.
93
112
.
You do not currently have access to this content.