Abstract

Uncertainties widely existing in modeling parameters, such as link length, joint clearance, and rotation angle, have the serious impact on the motion performance of industrial robots. In this study, a reliability analysis method based on evidence theory is proposed to uniformly analyze the influence of epistemic uncertainty and their correlation in modeling parameters on the positioning accuracy of robotic end effector. For the epistemic uncertainty derived from the limited sample data of modeling parameters, a generalized evidence theory model based on parallelotope frame is developed, which can uniformly quantify epistemic uncertainty and correlation of modeling parameters using the evidence framework of discernment and joint focal elements with same parallelotope features. To overcome the contradiction between analysis efficiency and accuracy for industrial robot positioning with nonlinearity, an efficient space affine collocation method is further proposed based on dimension reduction decomposition. Under the parallelotope evidence theory model, this method can provide an accurate reliability analysis result at a lower computational cost. A six degrees-of-freedom industrial robot is showcased to demonstrate the effectiveness and advantages of the proposed method in positioning accuracy reliability analysis.

References

1.
Vukobratović
,
M.
, and
Borovac
,
B.
,
1995
, “
Accuracy of the Robot Positioning and Orientation Assessed Via Its Manufacturing Tolerances
,”
Mech. Mach. Theory
,
30
(
1
), pp.
11
32
.
2.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
.
3.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1211
1222
.
4.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
,
Jia
,
X.
, and
Han
,
X.
,
2020
, “
A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots
,”
Appl. Math. Model.
,
82
, pp.
189
216
.
5.
Santolaria
,
J.
, and
Ginés
,
M.
,
2013
, “
Uncertainty Estimation in Robot Kinematic Calibration
,”
Rob. Comput. Integr. Manuf.
,
29
(
2
), pp.
370
384
.
6.
Hafezipour
,
M.
, and
Khodaygan
,
S.
,
2017
, “
An Uncertainty Analysis Method for Error Reduction in End-Effector of Spatial Robots With Joint Clearances and Link Dimension Deviations
,”
Int. J. Comput. Integr. Manuf.
,
30
(
6
), pp.
653
663
.
7.
Zhan
,
Z.
,
Zhang
,
X.
,
Jian
,
Z.
, and
Zhang
,
H.
,
2018
, “
Error Modelling and Motion Reliability Analysis of a Planar Parallel Manipulator With Multiple Uncertainties
,”
Mech. Mach. Theory
,
124
, pp.
55
72
.
8.
Huang
,
X.
,
Hu
,
S.
,
Zhang
,
Y.
, and
Xu
,
Y.
,
2015
, “
A Method to Determine Kinematic Accuracy Reliability of Gear Mechanisms With Truncated Random Variables
,”
Mech. Mach. Theory
,
92
, pp.
200
212
.
9.
Li
,
B.
,
Xie
,
L. Y.
,
Wei
,
Y. L.
,
Wu
,
Y.
,
Zhao
,
M. Y.
, and
Xu
,
S. Z.
,
2010
, “
Reliability Analysis of Kinematic Accuracy of a Three Degree-of-Freedom Parallel Manipulator
,”
Adv. Mater. Res.
,
118–120
, pp.
743
747
.
10.
Li
,
G.
,
Chen
,
Z.
,
Chen
,
C.
,
He
,
J.
,
Jin
,
T.
,
Yang
,
Z.
, and
Chen
,
X.
,
2019
, “
Reliability Analysis of Path Accuracy of Series Robot Based on QuasiInterval Monte Carlo Method
,”
Proceedings of the International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
,
Beijing, China
,
Aug. 6–9
, pp.
538
544
.
11.
Liu
,
T. S.
, and
Wang
,
J. D.
,
1994
, “
A Reliability Approach to Evaluating Robot Accuracy Performance
,”
Mech. Mach. Theory
,
29
(
1
), pp.
83
94
.
12.
He
,
B.
,
Zhang
,
P.
, and
Hou
,
S.
,
2015
, “
Accuracy Analysis of a Spherical 3-DOF Parallel Underactuated Robot Wrist
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
395
404
.
13.
Rao
,
S. S.
, and
Bhatti
,
P. K.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
.
14.
Jing
,
Y.
,
2011
, “
Convergence and Uncertainty Analyses in Monte-Carlo Based Sensitivity Analysis
,”
Environ. Model. Softw.
,
26
(
4
), pp.
444
457
.
15.
Janssen
,
H.
,
2013
, “
Monte-Carlo Based Uncertainty Analysis: Sampling Efficiency and Sampling Convergence
,”
Reliab. Eng. Syst. Saf.
,
109
(
2
), pp.
123
132
.
16.
Azarkish
,
H.
, and
Rashki
,
M.
,
2019
, “
Reliability and Reliability-Based Sensitivity Analysis of Shell and Tube Heat Exchangers Using Monte Carlo Simulation
,”
Appl. Therm. Eng.
,
159
, p.
113842
.
17.
Kim
,
J.
,
Song
,
W. J.
, and
Kang
,
B. S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
.
18.
Huang
,
P.
,
Huang
,
H.-Z.
,
Li
,
Y.-F.
, and
Li
,
H.
,
2021
, “
Positioning Accuracy Reliability Analysis of Industrial Robots Based on Differential Kinematics and Saddlepoint Approximation
,”
Mech. Mach. Theory
,
162
, p.
104367
.
19.
Zhang
,
D.
, and
Han
,
X.
,
2019
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
.
20.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.
21.
Zhao
,
Q.
,
Guo
,
J.
,
Hong
,
J.
, and
Chirikjian
,
G. S.
,
2021
, “
An Enhanced Moment-Based Approach to Time-Dependent Positional Reliability Analysis for Robotic Manipulators
,”
Mech. Mach. Theory
,
156
, p.
104167
.
22.
Wei
,
G.
,
Song
,
C.
, and
Tin-Loi
,
F.
,
2010
, “
Probabilistic Interval Analysis for Structures With Uncertainty
,”
Struct. Saf.
,
32
(
3
), pp.
191
199
.
23.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
.
24.
Wu
,
J.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
On Reliability Analysis Method Through Rotational Sparse Grid Nodes
,”
Mech. Syst. Signal Process.
,
147
, p.
107106
.
25.
Jiang
,
C.
,
Bi
,
R. G.
,
Lu
,
G. Y.
, and
Han
,
X.
,
2013
, “
Structural Reliability Analysis Using Non-Probabilistic Convex Model
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
83
98
.
26.
Xin
,
L.
,
Lairong
,
Y.
,
Lin
,
H.
, and
Zhiyong
,
Z.
,
2017
, “
An Efficient Reliability Analysis Approach for Structure Based on Probability and Probability Box Models
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
167
181
.
27.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Oberkampf
,
W. L.
, and
Sallaberry
,
C. J.
,
2006
, “
Sensitivity Analysis in Conjunction With Evidence Theory Representations of Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
91
(
10/11
), pp.
1414
1434
.
28.
Elishakoff
,
I.
,
Fang
,
T.
,
Sarlin
,
N.
, and
Jiang
,
C.
,
2021
, “
Uncertainty Quantification and Propagation Based on Hybrid Experimental, Theoretical, and Computational Treatment
,”
Mech. Syst. Signal Process.
,
147
, p.
107058
.
29.
Merlet
,
J. P.
,
2009
, “
Interval Analysis and Reliability in Robotics
,”
Int. J. Reliab. Saf.
,
3
(
1–3
), pp.
104
130
.
30.
Wu
,
W.
, and
Rao
,
S. S.
,
2007
, “
Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis
,”
Reliab. Eng. Syst. Saf.
,
92
(
1
), pp.
54
64
.
31.
Wu
,
J.
,
Han
,
X.
, and
Tao
,
Y.
,
2019
, “
Kinematic Response of Industrial Robot With Uncertain-but-Bounded Parameters Using Interval Analysis Method
,”
J. Mech. Sci. Technol.
,
33
(
1
), pp.
333
340
.
32.
Zhang
,
J.
,
Huang
,
Q. X.
,
Meng
,
W.
,
Yu
,
X.
, and
Ma
,
L.
,
2019
, “
Kinematics Uncertainty Analysis of Mine Bolter Manipulator Based on Chebyshev Interval Algorithms
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1
17
.
33.
Pac
,
M. R.
, and
Popa
,
D. O.
,
2013
, “
Interval Analysis of Kinematic Errors in Serial Manipulators Using Product of Exponentials Formula
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
525
535
.
34.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Oberkampf
,
W. L.
, and
Storlie
,
C. B.
,
2007
, “
A Sampling-Based Computational Strategy for the Representation of Epistemic Uncertainty in Model Predictions With Evidence Theory
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
37
), pp.
3980
3998
.
35.
Yin
,
S.
,
Yu
,
D.
,
Ma
,
Z.
, and
Xia
,
B.
,
2018
, “
A Unified Model Approach for Probability Response Analysis of Structure-Acoustic System With Random and Epistemic Uncertainties
,”
Mech. Syst. Signal Process.
,
111
, pp.
509
528
.
36.
Liu
,
J.
,
Cao
,
L.
,
Jiang
,
C.
,
Ni
,
B.
, and
Zhang
,
D.
,
2020
, “
Parallelotope-Formed Evidence Theory Model for Quantifying Uncertainties With Correlation
,”
Appl. Math. Model.
,
77
, pp.
32
48
.
37.
Zhang
,
D.
,
Liang
,
Y.
,
Cao
,
L.
,
Liu
,
J.
, and
Han
,
X.
,
2021
, “
Evidence-Theory-Based Reliability Analysis Through Kriging Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031701
.
38.
Zhang
,
Z.
, and
Jiang
,
C.
,
2021
, “
Evidence-Theory-Based Structural Reliability Analysis With Epistemic Uncertainty: A Review
,”
Struct. Multidiscipl. Optim.
,
63
(
6
), pp.
2935
2953
.
39.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
39
71
.
40.
Cao
,
L.
,
Liu
,
J.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
Q.
,
2018
, “
An Efficient Evidence-Based Reliability Analysis Method Via Piecewise Hyperplane Approximation of Limit State Function
,”
Struct. Multidiscipl. Optim.
,
58
(
8
), pp.
1
13
.
41.
Cao
,
L.
,
Liu
,
J.
,
Meng
,
X.
,
Zhao
,
Y.
, and
Yu
,
Z.
,
2021
, “
Inverse Uncertainty Quantification for Imprecise Structure Based on Evidence Theory and Similar System Analysis
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
2183
2198
.
42.
Zhang
,
Z.
,
Jiang
,
C.
,
Wang
,
G. G.
, and
Han
,
X.
,
2015
, “
First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
40
49
.
43.
Cao
,
L.
,
Liu
,
J.
,
Jiang
,
C.
,
Wu
,
Z. T.
, and
Zhang
,
Z.
,
2020
, “
Evidence-Based Structural Uncertainty Quantification by Dimension Reduction Decomposition and Marginal Interval Analysis
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051701
.
44.
Jiang
,
C.
,
Zhang
,
W.
,
Wang
,
B.
, and
Han
,
X.
,
2014
, “
Structural Reliability Analysis Using a Copula-Function-Based Evidence Theory Model
,”
Comput. Struct.
,
143
, pp.
19
31
.
You do not currently have access to this content.