Abstract

Multi-fidelity surrogate (MFS) modeling technology, which efficiently constructs surrogate models using low-fidelity (LF) and high-fidelity (HF) data, has been studied to enhance the predictive capability of engineering performances. In addition, several neural network (NN) structures for MFS modeling have been introduced, benefiting from recent developments in deep learning research. However, existing multi-fidelity (MF) NNs have been developed assuming identical sets of input variables for LF and HF data, a condition that is often not met in practical engineering systems. Therefore, this study proposes a new structure of composite NN designed for MF data with different input variables. The proposed network structure includes an input mapping network that connects the LF and HF data's input variables. Even when the physical relationship between these variables is unknown, the input mapping network can be concurrently trained during the process of training the whole network model. Customized loss functions and activation variables are suggested in this study to facilitate forward and backward propagation for the proposed NN structures when training MF data with different inputs. The effectiveness of the proposed method, in terms of prediction accuracy, is demonstrated through mathematical examples and practical engineering problems related to tire performances. The results confirm that the proposed method offers better accuracy than existing surrogate models in most problems. Moreover, the proposed method proves advantageous for surrogate modeling of nonlinear or discrete functions, a characteristic feature of NN-based methods.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fernández-Godino
,
M. G.
,
2023
, “
Review of Multi-Fidelity Models
,”
Adv. Comput. Sci. Eng.
,
1
(
4
), pp.
351
400
.
2.
Han
,
Z. H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
3.
Lee
,
M.
,
Jung
,
Y.
,
Choi
,
J.
, and
Lee
,
I.
,
2022
, “
A Reanalysis-Based Multi-Fidelity (RBMF) Surrogate Framework for Efficient Structural Optimization
,”
Comput. Struct.
,
273
.
4.
Zhang
,
X.
,
Xie
,
F.
,
Ji
,
T.
,
Zhu
,
Z.
, and
Zheng
,
Y.
,
2021
, “
Multi-fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
373
.
5.
Arenzana
,
R. C.
,
López-Lopera
,
A. F.
,
Mouton
,
S.
,
Bartoli
,
N.
, and
Lefebvre
,
T.
,
2021
, “
Multi-fidelity Gaussian Process Model for CFD and Wind Tunnel Data Fusion
,”
Proceedings of the ECCOMAS AeroBest 2021
,
Lisbon, Portugal
,
July 21–23
.
6.
Kuya
,
Y.
,
Takeda
,
K.
,
Zhang
,
X.
, and
Forrester
,
A. I.
,
2011
, “
Multifidelity Surrogate Modeling of Experimental and Computational Aerodynamic Data Sets
,”
AIAA J.
,
49
(
2
), pp.
289
298
.
7.
Lu
,
L.
,
Dao
,
M.
,
Kumar
,
P.
,
Ramamurty
,
U.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2020
, “
Extraction of Mechanical Properties of Materials Through Deep Learning From Instrumented Indentation
,”
Proc. Nat. Acad. Sci. U.S.A.
,
117
(
13
), pp.
7052
7062
.
8.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
9.
Perdikaris
,
P.
,
Raissi
,
M.
,
Damianou
,
A.
,
Lawrence
,
N. D.
, and
Karniadakis
,
G. E.
,
2017
, “
Nonlinear Information Fusion Algorithms for Data-Efficient Multi-fidelity Modelling
,”
Proc. R. Soc. A
,
473
(
2198
), p.
20160751
.
10.
Cutajar
,
K.
,
Pullin
,
M.
,
Damianou
,
A.
,
Lawrence
,
N.
, and
González
,
J.
,
2018
, “
Deep Gaussian Processes for Multi-fidelity Modeling
,”
Proceeding of the 32nd International Conference on Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 3–8
.
11.
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2020
, “
A Composite Neural Network That Learns From Multi-fidelity Data: Application to Function Approximation and Inverse PDE Problems
,”
J. Comput. Phys.
,
401
.
12.
Chakraborty
,
S.
,
2021
, “
Transfer Learning Based Multi-Fidelity Physics Informed Deep Neural Network
,”
J. Comput. Phys.
,
426
.
13.
Hebbal
,
A.
,
Brevault
,
L.
,
Balesdent
,
M.
,
Talbi
,
E. G.
, and
Melab
,
N.
,
2021
, “
Multi-Fidelity Modeling With Different Input Domain Definitions Using Deep Gaussian Processes
,”
Struct. Multidiscipl. Optim.
,
63
(
5
), pp.
2267
2288
.
14.
Tao
,
S.
,
Apley
,
D. W.
,
Chen
,
W.
,
Garbo
,
A.
,
Pate
,
D. J.
, and
German
,
B. J.
,
2019
, “
Input Mapping for Model Calibration With Application to Wing Aerodynamics
,”
AIAA J.
,
57
(
7
), pp.
2734
2745
.
15.
Raissi
,
M.
, and
Karniadakis
,
G.
,
2016
, “Deep Multi-Fidelity Gaussian Processes,” arXiv preprint arXiv:1604.07484.
16.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
17.
Kang
,
K.
,
Qin
,
C.
,
Lee
,
B.
, and
Lee
,
I.
,
2019
, “
Modified Screening-Based Kriging Method With Cross Validation and Application to Engineering Design
,”
Appl. Math. Model.
,
70
, pp.
626
642
.
18.
Marrel
,
A.
,
Iooss
,
B.
,
Van Dorpe
,
F.
, and
Volkova
,
E.
,
2008
, “
An Efficient Methodology for Modeling Complex Computer Codes With Gaussian Processes
,”
Comput. Stat. Data Anal.
,
52
(
10
), pp.
4731
4744
.
19.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
20.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
1029
1050
.
21.
Giselle Fernández-Godino
,
M.
,
Park
,
C.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
Issues in Deciding Whether to Use Multifidelity Surrogates
,”
AIAA J.
,
57
(
5
), pp.
2039
2054
.
22.
Guo
,
Q.
,
Hang
,
J.
,
Wang
,
S.
,
Hui
,
W.
, and
Xie
,
Z.
,
2021
, “
Design Optimization of Variable Stiffness Composites by Using Multi-fidelity Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
439
461
.
23.
Toal
,
D. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
51
(
6
), pp.
1223
1245
.
24.
Yong
,
H. K.
,
Wang
,
L.
,
Toal
,
D. J.
,
Keane
,
A. J.
, and
Stanley
,
F.
,
2019
, “
Multi-fidelity Kriging-Assisted Structural Optimization of Whole Engine Models Employing Medial Meshes
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
1209
1226
.
25.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
26.
Le Gratiet
,
L.
, and
Garnier
,
J.
,
2014
, “
Recursive Co-Kriging Model for Design of Computer Experiments With Multiple Levels of Fidelity
,”
Int. J. Uncertainty Quantif.
,
4
(
5
), pp.
365
386
.
27.
Hensman
,
J.
,
Fusi
,
N.
, and
Lawrence
,
N. D.
,
2013
, “
Gaussian Processes for Big Data
,”
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence
,
Bellevue, WA
,
July 11–15
, pp.
282
290
.
28.
Damianou
,
A.
, and
Lawrence
,
N. D.
,
2013
, “
Deep Gaussian Processes
,”
Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics
,
Scottsdale, AZ
,
Apr. 29–May 31
, PMLR, pp.
207
215
.
29.
Lee
,
U.
, and
Lee
,
I.
,
2022
, “
Efficient Sampling-Based Inverse Reliability Analysis Combining Monte Carlo Simulation (MCS) and Feedforward Neural Network (FNN)
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), pp.
1
22
.
30.
Nadai
,
N.
,
Melani
,
A. H.
,
Souza
,
G. F.
, and
Nabeta
,
S. I.
,
2017
, “
Equipment Failure Prediction Based on Neural Network Analysis Incorporating Maintainers Inspection Findings
,”
Proceedings of the 2017 Annual Reliability and Maintainability Symposium (RAMS)
,
Orlando, FL
,
Jan. 23–26
, IEEE, pp.
1
7
.
31.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
32.
Ojha
,
V. K.
,
Abraham
,
A.
, and
Snášel
,
V.
,
2017
, “
Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research
,”
Eng. Appl. Artif. Intell.
,
60
, pp.
97
116
.
33.
Seo
,
J.
,
Jung
,
P. H.
,
Kim
,
M.
,
Yang
,
S.
,
Lee
,
I.
,
Lee
,
J.
,
Lee
,
H.
, et al
Lee
,
B. J.
,
2019
, “
Design of a Broadband Solar Thermal Absorber Using a Deep Neural Network and Experimental Demonstration of Its Performance
,”
Sci. Rep.
,
9
(
1
), p.
15028
.
34.
Ciampiconi
,
L.
,
Elwood
,
A.
,
Leonardi
,
M.
,
Mohamed
,
A.
, and
Rozza
,
A.
,
2023
, “A Survey and Taxonomy of Loss Functions in Machine Learning,” arXiv preprint arXiv:2301.05579.
35.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
Proceedings of the 3rd International Conference for Learning Representations
,
San Diego, CA
,
May 7–9
.
36.
Ruder
,
S.
,
2016
, “An Overview of Gradient Descent Optimization Algorithms,” arXiv preprint arXiv:1609.04747.
37.
Nusrat
,
I.
, and
Jang
,
S. B.
,
2018
, “
A Comparison of Regularization Techniques in Deep Neural Networks
,”
Symmetry
,
10
(
11
), p.
648
.
38.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
39.
Xiong
,
S.
,
Qian
,
P. Z.
, and
Wu
,
C. J.
,
2013
, “
Sequential Design and Analysis of High-Accuracy and Low-Accuracy Computer Codes
,”
Technometrics
,
55
(
1
), pp.
37
46
.
40.
Pacejka
,
H.
,
2005
,
Tire and Vehicle Dynamics
,
Elsevier
,
New York
.
41.
Hall
,
D. E.
, and
Moreland
,
J. C.
,
2001
, “
Fundamentals of Rolling Resistance
,”
Rubber Chem. Technol.
,
74
(
3
), pp.
525
539
.
42.
Pelamatti
,
J.
,
Brevault
,
L.
,
Balesdent
,
M.
,
Talbi
,
E. G.
, and
Guerin
,
Y.
,
2020
, “Overview and Comparison of Gaussian Process-Based Surrogate Models for Mixed Continuous and Discrete Variables: Application on Aerospace Design Problems,”
High-Performance Simulation-Based Optimization
,
T.
Bartz-Beielstein
,
B.
Filipič
,
P.
Korošec
, and
E. G.
Talbi
, eds., Vol.
833
,
Springer
,
Cham
, pp.
189
224
.
43.
Garrido-Merchán
,
E. C.
, and
Hernández-Lobato
,
D.
,
2020
, “
Dealing With Categorical and Integer-Valued Variables in Bayesian Optimization With Gaussian Processes
,”
Neurocomputing
,
380
, pp.
20
35
.
44.
Bischl
,
B.
,
Binder
,
M.
,
Lang
,
M.
,
Pielok
,
T.
,
Richter
,
J.
,
Coors
,
S.
,
Thomas
,
J.
, et al
,
2023
, “
Hyperparameter Optimization: Foundations, Algorithms, Best Practices, and Open Challenges
,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
,
13
(
2
), p.
e1484
.
45.
Paleyes
,
A.
,
Pullin
,
M.
,
Mahsereci
,
M.
,
McCollum
,
C.
,
Lawrence
,
N. D.
, and
González
,
J.
,
2019
, “
Emulation of Physical Processes With Emukit
,”
Proceedings of the 33rd conference on Neural Information Processing Systems, Second Workshop on Machine Learning and the Physical Science
,
Vancouver, Canada
,
Dec. 14
.
You do not currently have access to this content.