Abstract

As modern electronic devices are increasingly miniaturized and integrated, their performance relies more heavily on effective thermal management. In this regard, two-phase cooling methods which capitalize on thin-film evaporation atop structured porous surfaces are emerging as potential solutions. In such porous structures, the optimum heat dissipation capacity relies on two competing objectives that depend on mass and heat transfer. Optimizing these objectives for effective thermal management is challenging due to the simulation costs and the high dimensionality of the design space which is often a voxelated microstructure representation that must also be manufacturable. We address these challenges by developing a data-driven framework for designing optimal porous microstructures for cooling applications. In our framework, we leverage spectral density functions to encode the design space via a handful of interpretable variables and, in turn, efficiently search it. We develop physics-based formulas to simulate the thermofluidic properties and assess the feasibility of candidate designs based on offline image-based analyses. To decrease the reliance on expensive simulations, we generate multi-fidelity data and build emulators to find Pareto-optimal designs. We apply our approach to a canonical problem on evaporator wick design and obtain fin-like topologies in the optimal microstructures which are also characteristics often observed in industrial applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Demosthenous
,
A.
,
2014
, “
Advances in Microelectronics for Implantable Medical Devices
,”
Adv. Electron.
,
2014
, pp.
1
21
.
2.
Michez
,
A.
,
Boch
,
J.
,
Dhombres
,
S.
,
Saigné
,
F.
,
Touboul
,
A. D.
,
Vaillé
,
J.-R.
,
Dusseau
,
L.
,
Lorfèvre
,
E.
, and
Ecoffet
,
R.
,
2013
, “
Modeling Dose Effects in Electronics Devices: Dose and Temperature Dependence of Power Mosfet
,”
Microelect. Reliab.
,
53
(
9–11
), pp.
1306
1310
.
3.
Puttaswamy
,
K.
, and
Loh
,
G. H.
,
2006
, “
Thermal Analysis of a 3D Die-Stacked High-Performance Microprocessor
,”
Proceedings of the 16th ACM Great Lakes Symposium on VLSI
,
Philadelphia, PA
,
Apr. 30–May 2
, pp.
19
24
.
4.
Choi
,
J.
,
Lee
,
C.
,
Lee
,
C.
,
Park
,
H.
,
Lee
,
S. M.
,
Kim
,
C.-H.
,
Yoo
,
H.
, and
Im
,
S. G.
,
2022
, “
Vertically Stacked, Low-Voltage Organic Ternary Logic Circuits Including Nonvolatile Floating-Gate Memory Transistors
,”
Nat. Commun.
,
13
(
1
), p.
2305
.
5.
Xie
,
G.
,
Zhang
,
F.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.
6.
Fang
,
R.
,
Jiang
,
W.
,
Khan
,
J.
, and
Dougal
,
R.
,
2010
, “
Experimental Heat Transfer Enhancement in Single-Phase Liquid Microchannel Cooling With Cross-Flow Synthetic Jet
,”
International Heat Transfer Conference, Volume 49408
,
Washington, DC
,
Aug. 7–13
, pp.
681
689
.
7.
Hoang
,
C. H.
,
Rangarajan
,
S.
,
Manaserh
,
Y.
,
Tradat
,
M.
,
Mohsenian
,
G.
,
Choobineh
,
L.
,
Ortega
,
A.
,
Schiffres
,
S.
, and
Sammakia
,
B.
,
2021
, “
A Review of Recent Developments in Pumped Two-Phase Cooling Technologies for Electronic Devices
,”
IEEE Trans. Comp. Packag. Manuf. Technol.
,
11
(
10
), pp.
1565
1582
.
8.
Moghadasi
,
H.
, and
Saffari
,
H.
,
2021
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer Improvement Utilizing Micro/Nanoparticles Porous Coating on Copper Surfaces
,”
Int. J. Mech. Sci.
,
196
, p.
106270
.
9.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
462
472
.
10.
Adera
,
S.
,
Antao
,
D.
,
Raj
,
R.
, and
Wang
,
E. N.
,
2016
, “
Design of Micropillar Wicks for Thin-Film Evaporation
,”
Int. J. Heat Mass Transfer
,
101
, pp.
280
294
.
11.
Pham
,
Q. N.
,
Zhang
,
S.
,
Hao
,
S.
,
Montazeri
,
K.
,
Lin
,
C. -H.
,
Lee
,
J.
,
Mohraz
,
A.
, and
Won
,
Y.
,
2020
, “
Boiling Heat Transfer With a Well-Ordered Microporous Architecture
,”
ACS Appl. Mater. Interfaces
,
12
(
16
), pp.
19174
19183
.
12.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
.
13.
Iyer
,
A.
,
Dulal
,
R.
,
Zhang
,
Y.
,
Ghumman
,
U. F.
,
Chien
,
T.
,
Balasubramanian
,
G.
, and
Chen
,
W.
,
2020
, “
Designing Anisotropic Microstructures With Spectral Density Function
,”
Comput. Mater. Sci.
,
179
, p.
109559
.
14.
Eweis-Labolle
,
J. T.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2022
, “
Data Fusion With Latent Map Gaussian Processes
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091703
.
15.
Mora
,
C.
,
Eweis-Labolle
,
J. T.
,
Johnson
,
T.
,
Gadde
,
L.
, and
Bostanabad
,
R.
,
2023
, “
Probabilistic Neural Data Fusion for Learning From an Arbitrary Number of Multi-fidelity Data Sets
,”
Comput. Methods Appl. Mech. Eng.
,
415
, p.
116207
.
16.
Yousefpour
,
A.
,
Foumani
,
Z. Z.
,
Shishehbor
,
M.
,
Mora
,
C.
, and
Bostanabad
,
R.
,
2023
, “Gp+: A Python Library for Kernel-Based Learning Via Gaussian Processes”. eprint arXiv:2312.07694.
17.
Foumani
,
Z. Z.
,
Yousefpour
,
A.
,
Shishehbor
,
M.
, and
Bostanabad
,
R.
,
2024
, “
Safeguarding Multi-fidelity Bayesian Optimization Against Large Model Form Errors and Heterogeneous Noise
,”
ASME J. Mech. Des.
,
146
(
6
), p.
061703
.
18.
Foumani
,
Z. Z.
,
Shishehbor
,
M.
,
Yousefpour
,
A.
, and
Bostanabad
,
R.
,
2023
, “
Multi-fidelity Cost-Aware Bayesian Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
407
, p.
115937
.
19.
Blunt
,
M. J.
,
2001
, “
Flow in Porous Media-Pore-Network Models and Multiphase Flow
,”
Curr. Opin. Colloid. Interface. Sci.
,
6
(
3
), pp.
197
207
.
20.
Eymard
,
R.
,
Gallouët
,
T.
, and
Herbin
,
R
,
2000
, “
Finite Volume Methods
,”
Handbook Numer. Anal.
,
7
, pp.
713
1018
.
21.
Freed
,
D. M.
,
1998
, “
Lattice-Boltzmann Method for Macroscopic Porous Media Modeling
,”
Inter. J. Modern Phys. C
,
9
(
8
), pp.
1491
1503
.
22.
Oune
,
N.
, and
Bostanabad
,
R.
,
2021
, “
Latent Map Gaussian Processes for Mixed Variable Metamodeling
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114128
.
23.
Baker
,
C.
,
2014
, “
A Review of Train Aerodynamics Part 1—Fundamentals
,”
Aeronaut. J.
,
118
(
1201
), pp.
201
228
.
24.
Rabbani
,
A.
, and
Babaei
,
M.
,
2019
, “
Hybrid Pore-Network and Lattice-Boltzmann Permeability Modelling Accelerated by Machine Learning
,”
Adv. Water Res.
,
126
, pp.
116
128
.
25.
Tembely
,
M.
,
AlSumaiti
,
A. M.
, and
Alameri
,
W.
,
2020
, “
A Deep Learning Perspective on Predicting Permeability in Porous Media From Network Modeling to Direct Simulation
,”
Comput. Geosci.
,
24
, pp.
1541
1556
.
26.
Hanks
,
D. F.
,
Lu
,
Z.
,
Sircar
,
J.
,
Salamon
,
T. R.
,
Antao
,
D. S.
,
Bagnall
,
K. R.
,
Barabadi
,
B.
, and
Wang
,
E. N.
,
2018
, “
Nanoporous Membrane Device for Ultra High Heat Flux Thermal Management
,”
Microsyst. Nanoeng.
,
4
(
1
), p.
1
.
27.
Agrawal
,
P.
,
Mascini
,
A.
,
Bultreys
,
T.
,
Aslannejad
,
H.
,
Wolthers
,
M.
,
Cnudde
,
V.
,
Butler
,
I. B.
, and
Raoof
,
A.
,
2021
, “
The Impact of Pore-Throat Shape Evolution During Dissolution on Carbonate Rock Permeability: Pore Network Modeling and Experiments
,”
Adv. Water Res.
,
155
, p.
103991
.
28.
Gostick
,
J. T.
,
Ioannidis
,
M. A.
,
Fowler
,
M. W.
, and
Pritzker
,
M. D.
,
2007
, “
Pore Network Modeling of Fibrous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources.
,
173
(
1
), pp.
277
290
.
29.
Gostick
,
J. T.
,
Khan
,
Z. A.
,
Tranter
,
T. G.
,
Kok
,
M. D.
,
Agnaou
,
M.
,
Sadeghi
,
M.
, and
Jervis
,
R.
,
2019
, “
Porespy: A Python Toolkit for Quantitative Analysis of Porous Media Images
,”
J. Open Source Soft.
,
4
(
37
), p.
1296
.
30.
Gostick
,
J.
,
Aghighi
,
M.
,
Hinebaugh
,
J.
,
Tranter
,
T.
,
Hoeh
,
M. A.
,
Day
,
H.
,
Spellacy
,
B.
,
Sharqawy
,
M. H.
,
Bazylak
,
A.
,
Burns
,
A.
et al.,
2016
, “
Openpnm: A Pore Network Modeling Package
,”
Comput. Sci. Eng.
,
18
(
4
), pp.
60
74
.
31.
Tian
,
Y.
,
Liu
,
X.
,
Xu
,
Q.
,
Luo
,
Q.
,
Zheng
,
H.
,
Song
,
C.
,
Zhu
,
Z.
,
Gao
,
K.
,
Dang
,
C.
,
Wang
,
H.
et al.,
2021
, “
Bionic Topology Optimization of Fins for Rapid Latent Heat Thermal Energy Storage
,”
Appl. Therm. Eng.
,
194
, p.
117104
.
32.
Liu
,
Q.
,
Shi
,
Q.
,
Yao
,
X.
,
Xu
,
C.
,
El-Samie
,
M. M. A.
, and
Ju
,
X.
,
2023
, “
Study of Manifold Micro-Pin-Fin Heat Sinks: Application of Rhombus-Based Topologies to Organize Three-Dimensional Flows
,”
J. Therm. Anal. Calorim.
,
149
, pp.
389
411
.
33.
Wang
,
C.-C.
,
2017
, “
A Quick Overview of Compact Air-cooled Heat Sinks Applicable for Electronic Cooling–recent Progress
,”
Inventions
,
2
(
1
), p.
5
.
34.
He
,
Z.
,
Yan
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review
,”
Energy
,
216
, p.
119223
.
35.
Lee
,
J. S.
,
Yoon
,
S. Y.
,
Kim
,
B.
,
Lee
,
H.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2021
, “
A Topology Optimization Based Design of a Liquid-Cooled Heat Sink With Cylindrical Pin Fins Having Varying Pitch
,”
Int. J. Heat Mass Transfer
,
172
, p.
121172
.
36.
Haertel
,
J. H.
, and
Nellis
,
G. F.
,
2017
, “
A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers
,”
Appl. Therm. Eng.
,
119
, pp.
10
24
.
You do not currently have access to this content.