Abstract

Resource management in engineering design seeks to optimally allocate while maximizing the performance metrics of the final design. Bayesian optimization (BO) is an efficient design framework that judiciously allocates resources through heuristic-based searches, aiming to identify the optimal design region with minimal experiments. Upon recommending a series of experiments or tasks, the framework anticipates their completion to augment its knowledge repository, subsequently guiding its decisions toward the most favorable next steps. However, when confronted with time constraints or other resource challenges, bottlenecks can hinder the traditional BO’s ability to assimilate knowledge and allocate resources with efficiency. In this work, we introduce an asynchronous learning framework designed to utilize idle periods between experiments. This model adeptly allocates resources, capitalizing on lower fidelity experiments to gather comprehensive insights about the target objective function. Such an approach ensures that the system progresses uninhibited by the outcomes of prior experiments, as it provisionally relies on anticipated results as stand-ins for actual outcomes. We initiate our exploration by addressing a basic problem, contrasting the efficacy of asynchronous learning against traditional synchronous multi-fidelity BO. We then employ this method to a practical challenge: optimizing a specific mechanical characteristic of a dual-phase steel.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
,
The MIT Press
,
Cambridge, MA
.
2.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2015
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
3.
Frazier
,
P. I.
,
2018
, “Bayesian Optimization,”
Recent Advances in Optimization and Modeling of Contemporary Problems-Informs
,
Catonsville, MD
, pp.
255
278
.
4.
Joy
,
T. T.
,
Rana
,
S.
,
Gupta
,
S.
, and
Venkatesh
,
S.
,
2020
, “
Batch Bayesian Optimization Using Multi-scale Search
,”
Knowl.-Based Syst.
,
187
(
104818
).
5.
Couperthwaite
,
R.
,
Molkeri
,
A.
,
Khatamsaz
,
D.
,
Srivastava
,
A.
,
Allaire
,
D.
, and
Arròyave
,
R.
,
2020
, “
Materials Design Through Batch Bayesian Optimization With Multisource Information Fusion
,”
JOM
,
72
, pp.
1
13
.
6.
Ghoreishi
,
S. F.
,
Friedman
,
S.
, and
Allaire
,
D. L.
,
2019
, “
Adaptive Dimensionality Reduction for Fast Sequential Optimization With Gaussian Processes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071404
.
7.
Constantine
,
P. G.
,
Dow
,
E.
, and
Wang
,
Q.
,
2014
, “
Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces
,”
SIAM J. Sci. Comput.
,
36
(
4
), pp.
A1500
A1524
.
8.
Khatamsaz
,
D.
,
Molkeri
,
A.
,
Couperthwaite
,
R.
,
James
,
J.
,
Arróyave
,
R.
,
Srivastava
,
A.
, and
Allaire
,
D.
,
2021
, “
Adaptive Active Subspace-Based Efficient Multifidelity Materials Design
,”
Mater. Des.
,
209
.
9.
Zhang
,
Y.
,
Hoang
,
T. N.
,
Low
,
B. K. H.
, and
Kankanhalli
,
M.
,
2017
, “
Information-Based Multi-fidelity Bayesian Optimization
,” NIPS Workshop on Bayesian Optimization, p.
49
.
10.
Ghoreishi
,
S. F.
,
Molkeri
,
A.
,
Srivastava
,
A.
,
Arroyave
,
R.
, and
Allaire
,
D.
,
2018
, “
Multi-information Source Fusion and Optimization to Realize ICME: Application to Dual-Phase Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111409
.
11.
Ghoreishi
,
S. F.
, and
Allaire
,
D.
,
2019
, “
Multi-information Source Constrained Bayesian Optimization
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
977
991
.
12.
Khatamsaz
,
D.
,
Peddareddygari
,
L.
,
Friedman
,
S.
, and
Allaire
,
D. L.
,
2020
, “
Efficient Multi-information Source Multiobjective Bayesian Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
2127
.
13.
Khatamsaz
,
D.
,
Peddareddygari
,
L.
,
Friedman
,
S.
, and
Allaire
,
D.
,
2021
, “
Bayesian Optimization of Multiobjective Functions Using Multiple Information Sources
,”
AIAA J.
,
59
(
6
), pp.
1964
1974
.
14.
McDannald
,
A.
,
Frontzek
,
M.
,
Savici
,
A. T.
,
Doucet
,
M.
,
Rodriguez
,
E. E.
,
Meuse
,
K.
,
Opsahl-Ong
,
J.
, et al
,
2022
, “
On-the-Fly Autonomous Control of Neutron Diffraction Via Physics-Informed Bayesian Active Learning
,”
Appl. Phys. Rev.
,
9
(
2
), p.
021408
.
15.
Ziatdinov
,
M. A.
,
Ghosh
,
A.
, and
Kalinin
,
S. V.
,
2022
, “
Physics Makes the Difference: Bayesian Optimization and Active Learning Via Augmented Gaussian Process
,”
Mach. Learn.: Sci. Technol.
,
3
(
1
), p.
015003
.
16.
Chakrabarty
,
A.
,
Wichern
,
G.
, and
Laughman
,
C.
,
2021
, “Attentive Neural Processes and Batch Bayesian Optimization for Scalable Calibration of Physics-Informed Digital Twins”. arXiv preprint arXiv:2106.15502.
17.
Astudillo
,
R.
, and
Frazier
,
P. I.
,
2021
, “
Thinking Inside the Box: A Tutorial on Grey-Box Bayesian Optimization
,”
WSC
,
Phoenix, AZ
.
18.
Kandasamy
,
K.
,
Krishnamurthy
,
A.
,
Schneider
,
J.
, and
Póczos
,
B.
,
2018
, “
Parallelised Bayesian Optimisation Via Thompson Sampling
,”
Artificial Intelligence and Statistics
,
Lanzarote, Spain
, PMLR, pp.
133
142
.
19.
Folch
,
J. P.
,
Lee
,
R. M.
,
Shafei
,
B.
,
Walz
,
D.
,
Tsay
,
C.
,
van der Wilk
,
M.
, and
Misener
,
R.
,
2023
, “
Combining Multi-fidelity Modelling and Asynchronous Batch Bayesian Optimization
,”
Comput. Chem. Eng.
,
172
.
20.
González
,
J.
,
Dai
,
Z.
,
Hennig
,
P.
, and
Lawrence
,
N.
,
2016
, “
Batch Bayesian Optimization Via Local Penalization
,”
Artificial Intelligence and Statistics
,
Cadiz, Spain
, PMLR, pp.
648
657
.
21.
Ginsbourger
,
D.
,
Janusevskis
,
J.
, and
Le Riche
,
R.
,
2011
, “
Dealing with Asynchronicity in Parallel Gaussian Process Based Global Optimization
,” Ph.D. thesis, Mines Saint-Etienn.
22.
Janusevskis
,
J.
,
Le Riche
,
R.
,
Ginsbourger
,
D.
, and
Girdziusas
,
R.
,
2012
, “
Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges
,”
Learning and Intelligent Optimization
,
Paris, France
, Springer, pp.
413
418
.
23.
Allaire
,
D.
, and
Willcox
,
K.
,
2012
, “
Fusing Information From Multifidelity Computer Models of Physical Systems
,” 2012 15th International Conference on Information Fusion,
IEEE
, pp.
2458
2465
.
24.
Ghoreishi
,
S. F.
, and
Allaire
,
D. L.
,
2018
, “
A Fusion-Based Multi-information Source Optimization Approach Using Knowledge Gradient Policies
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
, p.
1159
.
25.
Thomison
,
W. D.
, and
Allaire
,
D. L.
,
2017
, “
A Model Reification Approach to Fusing Information From Multifidelity Information Sources
,” 19th AIAA Non-Deterministic Approaches Conference, p.
1949
.
26.
Clyde
,
M.
,
2003
, “Model Averaging,”
Subjective and Objective Bayesian Statistics
, 2nd ed.,
Wiley-Interscience
,
Hoboken, NJ
.
27.
Clyde
,
M.
, and
George
,
E.
,
2004
, “
Model Uncertainty
,”
Stat. Sci.
,
19
(
No. 1
), pp.
81
94
.
28.
Draper
,
D.
,
1995
, “
Assessment and Propagation of Model Uncertainty
,”
J. R. Stat. Soc. Ser. B
,
57
(
1
), pp.
45
97
.
29.
Hoeting
,
J.
,
Madigan
,
D.
,
Raftery
,
A.
, and
Volinsky
,
C.
,
1999
, “
Bayesian Model Averaging: A Tutorial
,”
Stat. Sci.
,
14
(
4
), pp.
382
417
.
30.
Leamer
,
E.
,
1978
,
Specification Searches: Ad Hoc Inference With Nonexperimental Data
,
John Wiley & Sons
,
New York
.
31.
Madigan
,
D.
, and
Raftery
,
A.
,
1994
, “
Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam’s Window
,”
Am. Stat. Assoc.
,
89
(
428
), pp.
1535
1546
.
32.
Mosleh
,
A.
, and
Apostolakis
,
G.
,
1986
, “
The Assessment of Probability Distributions From Expert Opinions With an Application to Seismic Fragility Curves
,”
Risk Anal.
,
6
(
4
), pp.
447
461
.
33.
Reinert
,
J.
, and
Apostolakis
,
G.
,
2006
, “
Including Model Uncertainty in Risk-Informed Decision Making
,”
Ann. Nucl. Energy
,
33
(
4
), pp.
354
369
.
34.
Riley
,
M.
, and
Grandhi
,
R.
,
2011
, “
Quantification of Modeling Uncertainty in Aeroelastic Analyses
,”
J. Aircr.
,
48
(
3
), pp.
866
873
.
35.
Zio
,
E.
, and
Apostolakis
,
G.
,
1996
, “
Two Methods for the Structured Assessment of Model Uncertainty by Experts in Performance Assessments of Radioactive Waste Repositories
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
225
241
.
36.
Julier
,
S.
, and
Uhlmann
,
J.
,
2001
, “General Decentralized Data Fusion With Covariance Intersection,”
Handbook of Data Fusion
, D. Hall, and J. Llinas, eds.,
CRC Press
,
Boca Raton, FL
.
37.
Julier
,
S.
, and
Uhlmann
,
J.
,
1997
, “
A Non-Divergent Estimation Algorithm in the Presence of Unknown Correlations
,”
Proceedings of the 1997 American Control Conference
,
Albuquerque, NM
, pp.
2369
2373
.
38.
Geisser
,
S.
,
1965
, “
A Bayes Approach for Combining Correlated Estimates
,”
J. Am. Stat. Assoc.
,
60
(
310
), pp.
602
607
.
39.
Morris
,
P.
,
1977
, “
Combining Expert Judgments: A Bayesian Approach
,”
Manage. Sci.
,
23
(
7
), pp.
679
693
.
40.
Winkler
,
R.
,
1981
, “
Combining Probability Distributions From Dependent Information Sources
,”
Manage. Sci.
,
27
(
4
), pp.
479
488
.
41.
Powell
,
W. B.
, and
Ryzhov
,
I. O.
,
2012
,
Optimal Learning
, Vol.
841
,
John Wiley & Sons
,
Hoboken, NJ
.
42.
Frazier
,
P.
,
Powell
,
W.
, and
Dayanik
,
S.
,
2009
, “
The Knowledge-Gradient Policy for Correlated Normal Beliefs
,”
INFORMS J. Comput.
,
21
(
4
), pp.
599
613
.
43.
Frazier
,
P. I.
,
Powell
,
W. B.
, and
Dayanik
,
S.
,
2008
, “
A Knowledge-Gradient Policy for Sequential Information Collection
,”
SIAM J. Control Optim.
,
47
(
5
), pp.
2410
2439
.
44.
Ghoreishi
,
S. F.
,
Molkeri
,
A.
,
Arróyave
,
R.
,
Allaire
,
D.
, and
Srivastava
,
A.
,
2019
, “
Efficient Use of Multiple Information Sources in Material Design
,”
Acta Mater.
,
180
, pp.
260
271
.
45.
Khatamsaz
,
D.
,
Molkeri
,
A.
,
Couperthwaite
,
R.
,
James
,
J.
,
Arróyave
,
R.
,
Allaire
,
D.
, and
Srivastava
,
A.
,
2021
, “
Efficiently Exploiting Process-Structure-Property Relationships in Material Design by Multi-information Source Fusion
,”
Acta Mater.
,
206
(
116619
).
46.
Molkeri
,
A.
,
Khatamsaz
,
D.
,
Couperthwaite
,
R.
,
James
,
J.
,
Arróyave
,
R.
,
Allaire
,
D.
, and
Srivastava
,
A.
,
2022
, “
On the Importance of Microstructure Information in Materials Design: PSP Vs PP
,”
Acta Mater.
,
223
(
117471
).
47.
Bhattacharya
,
D.
,
2011
, “Metallurgical Perspectives on Advanced Sheet Steels for Automotive Applications,”
Advanced Steels
,
Springer
,
Berlin/Heidelberg
, pp.
163
175
.
48.
Chen
,
P.
,
Ghassemi-Armaki
,
H.
,
Kumar
,
S.
,
Bower
,
A.
,
Bhat
,
S.
, and
Sadagopan
,
S.
,
2014
, “
Microscale-Calibrated Modeling of the Deformation Response of Dual-Phase Steels
,”
Acta Mater.
,
65
, pp.
133
149
.
49.
Srivastava
,
A.
,
Bower
,
A.
,
Hector
,
L.
,
Carsley
,
J.
,
Zhang
,
L.
, and
Abu-Farha
,
F.
,
2016
, “
A Multiscale Approach to Modeling Formability of Dual-Phase Steels
,”
Modell. Simul. Mater. Sci. Eng.
,
24
(
2
), p.
025011
.
50.
Voigt
,
W.
,
1889
, “
On the Relation Between the Elasticity Constants of Isotropic Bodies
,”
Ann. Phys. Chem.
,
274
, pp.
573
587
.
51.
Reuß
,
A.
,
1929
, “
Berechnung Der Fließgrenze Von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle.
,”
ZAMM-J. Appl. Math. Mech.
,
9
(
1
), pp.
49
58
.
52.
Bouaziz
,
O.
, and
Buessler
,
P.
,
2002
, “
Mechanical Behaviour of Multiphase Materials: An Intermediate Mixture Law Without Fitting Parameter
,”
Metall. Res. Technol.
,
99
(
1
), pp.
71
77
.
You do not currently have access to this content.