Abstract

The truss static structure system has excellent large load and lightweight characteristics. It is easy to embed actuators by substituting specific members in the structure and has the potential for multidimensional space deformation. Inspired by uniform tessellation structures, this article proposes a novel shape morphing mechanism (SMM) based on the combined design of tetrahedral-octahedral heterogeneous units (TOHUs). The relationship between the motion properties and driving configuration of the tetrahedral-octahedral units is analyzed to determine their conceptual configuration based on graph theory. Then, the weighted graph, adjacency matrix, and connection rules are evaluated to synthesize the conceptual structure for the truss mechanism. The results show that this configuration can allow multidimensional continuous deformations, including span, bend, sweep, and twist. A prototype is built to verify its deformability. Finally, the stiffness performance is analyzed based on the matrix displacement method. This research provides a comprehensive design method for constructing SMM, expands the range of combinable units and connection methods, and offers theoretical guidance for the innovative design of multidimensional deformation SMM in aerospace.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chen
,
X.
,
Li
,
C.
,
Gong
,
C.
,
Gu
,
L.
, and
Da Ronch
,
A.
,
2021
, “
A Study of Morphing Aircraft on Morphing Rules Along Trajectory
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
232
243
.
2.
Concilio
,
A.
,
Dimino
,
I.
,
Lecce
,
L.
, and
Pecora
,
R.
,
2018
, “On the Experimental Characterization of Morphing Structures,”
Morphing Wing Technologies
,
Butterworth-Heinemann
,
Britain
, pp.
683
712
.
3.
Phoenix
,
A.
,
Maxwell
,
J.
, and
Goodwin
,
G.
,
2017
, “
Morphing High-Temperature Surfaces for Shapeable Hypersonic Waverider Vehicles
,”
Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 18–20
.
4.
Chu
,
L.
,
Li
,
Q.
,
Gu
,
F.
,
Du
,
X.
,
He
,
Y.
, and
Deng
,
Y.
,
2022
, “
Design, Modeling, and Control of Morphing Aircraft: A Review
,”
Chin. J. Aeronaut.
,
35
(
5
), pp.
220
246
.
5.
Concilio
,
A.
,
Dimino
,
I.
,
Lecce
,
L.
, and
Pecora
,
R.
,
2018
, “Aircraft Morphing an Industry Vision,”
Morphing Wing Technologies
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
85
101
.
6.
Bowman
,
J.
,
Sanders
,
B.
,
Cannon
,
B.
,
Kudva
,
J.
,
Joshi
,
S.
, and
Weisshaar
,
T.
,
2007
, “
Development of Next Generation Morphing Aircraft Structures
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
1730
.
7.
Tsushima
,
N.
, and
Tamayama
,
M.
,
2019
, “
Recent Researches on Morphing Aircraft Technologies in Japan and Other Countries
,”
Mech. Eng. Rev.
,
6
(
2
), pp.
19
00197
.
8.
Ambrose
,
J.
,
1994
,
Design of Building Trusses
, Vol.
22
,
John Wiley & Sons
,
Hoboken, NJ
.
9.
Forestiero
,
F.
,
Xenos
,
N.
,
Wood
,
D.
, and
Baharlou
,
E.
,
2018
, “
Low-Tech Shape-Shifting Space Frames
,”
Proceedings of IASS Annual Symposia IASS
,
MIT, Boston, MA
,
July 16–20
.
10.
Symons
,
D.
,
Hutchinson
,
R.
, and
Fleck
,
N.
,
2005
, “
Actuation of the Kagome Double-Layer Grid. Part 1: Prediction of Performance of the Perfect Structure
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1855
1874
.
11.
Liu
,
M.
,
Shi
,
C.
,
Guo
,
H.
,
Ma
,
X.
,
Liu
,
R.
, and
Hu
,
F.
,
2022
, “
Innovative Design and Optimization of the Modular High Deployment Ratio two-Dimensional Planar Antenna Mechanism
,”
Mech. Mach. Theory
,
174
, p.
104928
.
12.
Miura
,
K.
,
1984
, “
Design and Operation of a Deployable Truss Structure
,”
NASA. Goddard Space Flight Center The 18th Aerospace Mechanisms Symposium
,
Greenbelt, MD
,
May 2–4
.
13.
Miura
,
K.
,
Furuya
,
H.
, and
Suzuki
,
K.
,
1985
, “
Variable Geometry Truss and Its Application to Deployable Truss and Space Crane Arm
,”
Acta Astronaut.
,
12
(
7–8
), pp.
599
607
.
14.
Chirikjian
,
G.
,
1992
,
Theory and Applications of Hyper-Redundant Robotic Manipulators
,
California Institute of Technology
,
Los Angeles
.
15.
Sofla
,
A.
,
Elzey
,
D.
, and
Wadley
,
H.
,
2009
, “
Shape Morphing Hinged Truss Structures
,”
Smart Mater. Struct.
,
18
(
6
), p.
065012
.
16.
Sofla
,
A.
,
Meguid
,
S.
,
Tan
,
K.
, and
Yeo
,
W.
,
2010
, “
Shape Morphing of Aircraft Wing: Status and Challenges
,”
Mater. Des.
,
31
(
3
), pp.
1284
1292
.
17.
Du Pasquier
,
C.
, and
Shea
,
K.
,
2021
, “
Actuator Placement Optimization in an Active Lattice Structure Using Generalized Pattern Search and Verification
,”
Smart Mater. Struct.
,
30
(
11
), p.
115007
.
18.
Andersen
,
G.
,
Cowan
,
D.
, and
Piatak
,
D.
,
2007
, “
Aeroelastic Modeling, Analysis and Testing of a Morphing Wing Structure
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
1734
.
19.
Ramrakhyani
,
D.
,
Lesieutre
,
G.
,
Frecker
,
M.
, and
Bharti
,
S.
,
2005
, “
Aircraft Structural Morphing Using Tendon-Actuated Compliant Cellular Trusses
,”
J. Aircr.
,
42
(
6
), pp.
1614
1620
.
20.
Austin
,
F.
,
Rossi
,
M.
,
Van Nostrand
,
W.
,
Knowles
,
G.
, and
Jameson
,
A.
,
1994
, “
Static Shape Control for Adaptive Wings
,”
AIAA J.
,
32
(
9
), pp.
1895
1901
.
21.
Moosavian
,
A.
, and
Xi
,
F.
,
2014
, “
Design and Analysis of Reconfigurable Parallel Robots With Enhanced Stiffness
,”
Mech. Mach. Theory
,
77
, pp.
92
110
.
22.
Wang
,
J.
,
Zhao
,
Y.
,
Xi
,
F.
, and
Tian
,
Y.
,
2020
, “
Design and Analysis of a Configuration-Based Lengthwise Morphing Structure
,”
Mech. Mach. Theory
,
147
, p.
103767
.
23.
Choi
,
Y.
, and
Yun
,
G.
,
2022
, “
Variable Camber Morphing Wing Mechanism Using Deployable Scissor Structure: Design, Analysis and Manufacturing
,”
Adv. Aircr. Spacecr. Sci.
,
9
(
2
), pp.
103
117
.
24.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.
25.
Chen
,
Z.
,
Shi
,
C.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2023
, “
Design of a Deployable Mechanism Based on 7R-6R-Double-Loop Units for Mars Decelerators
,”
Mech. Mach. Theory
,
181
, p.
105180
.
26.
Zhang
,
X.
,
Kang
,
X.
, and
Li
,
B.
,
2023
, “
Origami-Inspired Design of a Single-Degree-of-Freedom Continuous Variable Bending Mechanism Based on Constraint Linkage Groups
,”
Mech. Mach. Theory
,
179
, p.
105106
.
27.
Gu
,
J.
,
Lin
,
Y.
,
Cui
,
Q.
,
Li
,
X.
,
Li
,
J.
,
Sun
,
L.
,
Yao
,
C.
,
Ying
,
F.
,
Wang
,
G.
, and
Yao
,
L.
,
2022
, “
PneuMesh: Pneumatic-Driven Truss-Based Shape Changing System
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29–May 5
, pp.
1
12
.
28.
Sofla
,
A.
,
Elzey
,
D.
, and
Wadley
,
H.
,
2007
, “
A Rotational Joint for Shape Morphing Space Truss Structures
,”
Smart Mater. Struct.
,
16
(
4
), p.
1277
1284
.
29.
Spinos
,
A.
,
Carroll
,
D.
, and
Kientz
,
T.
,
2017
, “
Variable Topology Truss: Design and Analysis
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
2717
2722
.
30.
Biggs
,
N.
,
Lloyd
,
E.
, and
Wilson
,
R.
,
1986
,
Graph Theory
,
Oxford University Press
,
New York
, pp.
1736
1936
.
31.
Ding
,
H.
,
Cao
,
W.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Complete Atlas Database of 2-DOF Kinematic Chains and Creative Design of Mechanisms
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031006
.
32.
Harary
,
F.
, and
Yan
,
H. S.
,
1990
, “
Logical Foundations of Kinematic Chains: Graphs, Line Graphs, and Hypergraphs
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
79
83
.
33.
Shai
,
O.
, and
Pennock
,
G. R.
,
2006
, “
Extension of Graph Theory to the Duality Between Static Systems and Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
179
191
.
34.
Ding
,
H.
, and
Huang
,
Z.
,
2007
, “
A Unique Representation of the Kinematic Chain and the Atlas Database
,”
Mech. Mach. Theory
,
42
(
6
), pp.
637
651
.
35.
Yang
,
W.
,
Ding
,
H.
, and
Kecskeméthy
,
A.
,
2022
, “
Structural Synthesis Towards Intelligent Design of Plane Mechanisms: Current Status and Future Research Trend
,”
Mech. Mach. Theory
,
171
, p.
104715
.
36.
Warnaar
,
D.
, and
Chew
,
M.
,
1995
, “
Kinematic Synthesis of Deployable-Foldable Truss Structures Using Graph Theory. I: Graph Generation
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
112
116
.
37.
Warnaar
,
D.
, and
Chew
,
M.
,
1995
, “
Kinematic Synthesis of Deployable-Foldable Truss Structures Using Graph Theory. II: Generation of Deployable Truss Module Design Concepts
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
117
122
.
38.
Yang
,
T.
,
Liu
,
A.
,
Shen
,
H.
,
Hang
,
L.
, and
Jeffery Ge
,
Q.
,
2018
, “
Composition Principle Based on Single-Open-Chain Unit for General Spatial Mechanisms and Its Application—In Conjunction With a Review of Development of Mechanism Composition Principles
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051005
.
39.
Grünbaum
,
B.
,
1994
, “
Uniform Tilings of 3-Space
,”
Geombinatorics
,
4
(
2
), pp.
49
56
.
40.
Zhao
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
,
Li
,
B.
, and
Tian
,
J.
,
2019
, “
Actuation Distribution and Workspace Analysis of a Novel 3 (3RRlS) Metamorphic Serial-Parallel Manipulator for Grasping Space Non-Cooperative Targets
,”
Mech. Mach. Theory
,
139
, pp.
424
442
.
41.
Yang
,
F.
,
Deng
,
Z.
,
Tao
,
J.
, and
Li
,
L.
,
2012
, “
A New Method for Isomorphism Identification in Topological Graphs Using Incident Matrices
,”
Mech. Mach. Theory
,
49
, pp.
298
307
.
42.
Pikoń
,
A.
, and
Wojnarowski
,
J.
,
1995
, “
Application of Structural Numbers to Generating the Characteristics of Mechanical Systems
,”
Mech. Mach. Theory
,
30
(
7
), pp.
1027
1037
.
43.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
44.
Stephen
,
N.
, and
Zhang
,
Y.
,
2004
, “
Eigenanalysis and Continuum Modelling of an Asymmetric Beam-Like Repetitive Structure
,”
Int. J. Mech. Sci.
,
46
(
8
), pp.
1213
1231
.
45.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
46.
Hjelmstad
,
K.
,
2007
,
Fundamentals of Structural Mechanics
,
Springer Science & Business Media
,
Berlin
.
You do not currently have access to this content.