Abstract

Advances in additive manufacturing enable fabrication of architected materials composed of microstructures with extreme mechanical properties. In the design of such architected materials, the parameterization of microstructures determines not just the computational cost but also connectivity between adjacent microstructures. In this paper, we propose a periodic composite function (PCF)-based approach for designing microstructures. The shape of the microstructures is characterized by the value of the periodic composite functions. The proposed method can program microstructures with both positive and negative Poisson’s ratios by a small number of parameters. Furthermore, due to its implicit representation, the proposed method allows for continuously tiling of microstructures with different mechanical properties. Explicit geometric features of the PCF-based microstructures are extracted, and the condition to maintain connectivity between adjacent microstructures is derived. Based on the proposed approach, multiple groups of 2D and 3D microstructures with Poisson’s ratios ranging from negative to positive are presented. Combining with a deep neural network (DNN)-based surrogate model to predict macroscopic material properties of the microstructures, the proposed method is applied to the design of architected materials for elastic deformation control. Numerical examples on both microstructure representation and architected materials design are presented to demonstrate the efficacy of the proposed approach.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsoe
,
M. P.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscipl. Optim.
,
24
(
1
), pp.
1
10
.
2.
Xia
,
L.
, and
Breitkopf
,
P.
,
2014
, “
Concurrent Topology Optimization Design of Material and Structure Within Fe2 Nonlinear Multiscale Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
278
, pp.
524
542
.
3.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-scale Structures: A Review
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1455
1480
.
4.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Methods Eng.
,
86
(
6
), pp.
765
781
.
5.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization—Theory, Methods and Applications
, 2nd ed.,
Springer Verlag
,
Berlin
.
6.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
7.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
1
38
.
8.
Lógó
,
J.
, and
Ismail
,
H.
,
2020
, “
Milestones in the 150-Year History of Topology Optimization: A Review
,”
Comput. Assist. Methods Eng. Sci.
,
27
(
2–3
), pp.
97
132
.
9.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A. C.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
10.
Xu
,
L.
, and
Cheng
,
G.
,
2018
, “
Two-Scale Concurrent Topology Optimization With Multiple Micro Materials Based on Principal Stress Orientation
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
2093
2107
.
11.
Jiang
,
L.
,
Guo
,
Y.
,
Chen
,
S.
,
Wei
,
P.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Concurrent Optimization of Structural Topology and Infill Properties With a CBF-Based Level Set Method
,”
Front. Mech. Eng.
,
14
(
2
), pp.
171
189
.
12.
Garner
,
E.
,
Wu
,
J.
, and
Zadpoor
,
A. A.
,
2022
, “
Multi-Objective Design Optimization of 3d Micro-architected Implants
,”
Comput. Methods Appl. Mech. Eng.
,
396
, p.
115102
.
13.
Li
,
D.
,
Liao
,
W.
,
Dai
,
N.
,
Dong
,
G.
,
Tang
,
Y.
, and
Xie
,
Y. M.
,
2018
, “
Optimal Design and Modeling of Gyroid-Based Functionally Graded Cellular Structures for Additive Manufacturing
,”
Comput. Aided Des.
,
104
, pp.
87
99
.
14.
Wang
,
C.
,
Zhu
,
J. H.
,
Zhang
,
W. H.
,
Li
,
S. Y.
, and
Kong
,
J.
,
2018
, “
Concurrent Topology Optimization Design of Structures and Non-uniform Parameterized Lattice Microstructures
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
35
50
.
15.
Watts
,
S.
,
Arrighi
,
W.
,
Kudo
,
J.
,
Tortorelli
,
D. A.
, and
White
,
D. A.
,
2019
, “
Simple, Accurate Surrogate Models of the Elastic Response of Three-Dimensional Open Truss Micro-Architectures With Applications to Multiscale Topology Design
,”
Struct. Multidiscipl. Optim.
,
60
(
5
), pp.
1887
1920
.
16.
Garner
,
E.
,
Kolken
,
H. M. A.
,
Wang
,
C. C. L.
,
Zadpoor
,
A. A.
, and
Wu
,
J.
,
2019
, “
Compatibility in Microstructural Optimization for Additive Manufacturing
,”
Addit. Manuf.
,
26
, pp.
65
75
.
17.
Wu
,
Z.
,
Xia
,
L.
,
Wang
,
S.
, and
Shi
,
T.
,
2019
, “
Topology Optimization of Hierarchical Lattice Structures With Substructuring
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
602
617
.
18.
Zhou
,
H.
,
Zhu
,
J.
,
Wang
,
C.
,
Zhang
,
Y.
,
Wang
,
J.
, and
Zhang
,
W.
,
2022
, “
Hierarchical Structure Optimization With Parameterized Lattice and Multiscale Finite Element Method
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), p.
39
.
19.
Kazemi
,
H.
, and
Norato
,
J. A.
,
2022
, “
Topology Optimization of Programmable Lattices With Geometric Primitives
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), pp.
1
15
.
20.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
1118
1135
.
21.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
J. Mech. Des.
,
143
(
3
), p.
031708
.
22.
Wang
,
L.
,
van Beek
,
A.
,
Da
,
D.
,
Chan
,
Y.-C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2022
, “
Data-Driven Multiscale Design of Cellular Composites With Multiclass Microstructures for Natural Frequency Maximization
,”
Compos. Struct.
,
280
, p.
114949
.
23.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
192
202
.
24.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The Coc Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
25.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1
), pp.
227
246
.
26.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
27.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
(
15
), pp.
5157
5167
.
28.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2013
, “
Topological Optimization for the Design of Microstructures of Isotropic Cellular Materials
,”
Eng. Optim.
,
45
(
11
), pp.
1331
1348
.
29.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
J. Mech. Des.
,
140
(
11
), p.
111417
.
30.
Woldseth
,
R. V.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2022
, “
On the Use of Artificial Neural Networks in Topology Optimisation
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), p.
294
.
31.
Bastek
,
J.-H.
,
Kumar
,
S.
,
Telgen
,
B.
,
Glaesener
,
R. N.
, and
Kochmann
,
D. M.
,
2022
, “
Inverting the Structure–Property Map of Truss Metamaterials by Deep Learning
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
1
), p.
e2111505119
.
32.
Gao
,
J.
,
Cao
,
X.
,
Xiao
,
M.
,
Yang
,
Z.
,
Zhou
,
X.
,
Li
,
Y.
,
Gao
,
L.
,
Yan
,
W.
,
Rabczuk
,
T.
, and
Mai
,
Y.-W.
,
2023
, “
Rational Designs of Mechanical Metamaterials: Formulations, Architectures, Tessellations and Prospects
,”
Mater. Sci. Eng. R: Reports
,
156
, p.
100755
.
33.
Zheng
,
L.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2021
, “
Data-Driven Topology Optimization of Spinodoid Metamaterials With Seamlessly Tunable Anisotropy
,”
Comput. Methods Appl. Mech. Eng.
,
383
, p.
113894
.
34.
Kim
,
C.
,
Lee
,
J.
, and
Yoo
,
J.
,
2021
, “
Machine Learning-Combined Topology Optimization for Functionary Graded Composite Structure Design
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114158
.
35.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
npj Comput. Mater.
,
6
(
1
), p.
73
.
36.
Black
,
N.
, and
Najafi
,
A. R.
,
2023
, “
Deep Neural Networks for Parameterized Homogenization in Concurrent Multiscale Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
66
(
1
), p.
20
.
37.
Patel
,
D.
,
Bielecki
,
D.
,
Rai
,
R.
, and
Dargush
,
G.
,
2022
, “
Improving Connectivity and Accelerating Multiscale Topology Optimization Using Deep Neural Network Techniques
,”
Struct. Multidiscipl. Optim.
,
65
(
4
), p.
126
.
38.
Chandrasekhar
,
A.
,
Sridhara
,
S.
, and
Suresh
,
K.
,
2023
, “
Graded Multiscale Topology Optimization Using Neural Networks
,”
Adv. Eng. Softw.
,
175
, p.
103359
.
39.
Lakes
,
R. S.
,
2017
, “
Negative-Poisson’s-Ratio Materials: Auxetic Solids
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
63
81
.
40.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
, p.
023001
.
41.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
42.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
43.
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2014
, “
Design of Manufacturable 3d Extremal Elastic Microstructure
,”
Mech. Mater.
,
69
(
1
), pp.
1
10
.
44.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2015
, “
Topology Optimization of Coated Structures and Material Interface Problems
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
524
541
.
45.
Wang
,
M. Y.
, and
Wang
,
X.
,
2005
, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput. Aided Des.
,
37
(
3
), pp.
321
337
.
46.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-material Negative Poisson's Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput. Aided Des.
,
83
, pp.
15
32
.
47.
Li
,
Q.
,
Chen
,
W.
,
Liu
,
S.
, and
Fan
,
H.
,
2018
, “
Topology Optimization Design of Cast Parts Based on Virtual Temperature Method
,”
Comput. Aided Des.
,
94
, pp.
28
40
.
48.
Wang
,
C.
,
Xia
,
S.
,
Wang
,
X.
, and
Qian
,
X.
,
2018
, “
Isogeometric Shape Optimization on Triangulations
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
585
622
.
49.
Wang
,
Z.
,
Poh
,
L. H.
,
Dirrenberger
,
J.
,
Zhu
,
Y.
, and
Forest
,
S.
,
2017
, “
Isogeometric Shape Optimization of Smoothed Petal Auxetic Structures Via Computational Periodic Homogenization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
250
271
.
50.
Kocer
,
C.
,
McKenzie
,
D. R.
, and
Bilek
,
M. M.
,
2009
, “
Elastic Properties of a Material Composed of Alternating Layers of Negative and Positive Poisson’s Ratio
,”
Mater. Sci. Eng. A
,
505
(
1–2
), pp.
111
115
.
51.
Shufrin
,
I.
,
Pasternak
,
E.
, and
Dyskin
,
A. V.
,
2015
, “
Hybrid Materials With Negative Poisson’s Ratio Inclusions
,”
Int. J. Eng. Sci.
,
89
, pp.
100
120
.
52.
Long
,
K.
,
Du
,
X.
,
Xu
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Maximizing the Effective Young’s Modulus of a Composite Material by Exploiting the Poisson Effect
,”
Compos. Struct.
,
153
, pp.
593
600
.
53.
Long
,
K.
,
Han
,
D.
, and
Gu
,
X.
,
2017
, “
Concurrent Topology Optimization of Composite Macrostructure and Microstructure Constructed by Constituent Phases of Distinct Poisson's Ratios for Maximum Frequency
,”
Comput. Mater. Sci.
,
129
, pp.
194
201
.
54.
Rvachev
,
V. L.
,
1974
,
Methods of Logic Algebra in Mathematical Physics
,
Kiev Izdatel Naukova Dumka
,
Kiev
.
55.
Shapiro
,
V.
,
1988
, “Theory of R-Functions and Applications: A Primer,” Technical Report CPA88-3, Cornell University.
56.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Vis. Comput.
,
11
(
8
), pp.
429
446
.
57.
Shapiro
,
V.
,
2007
, “
Semi-analytic Geometry With R-Functions
,”
Acta Numer.
,
16
, pp.
239
303
.
58.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graph. Models
,
73
(
5
), pp.
165
181
.
59.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
60.
Xu
,
S.
,
Cai
,
Y.
, and
Cheng
,
G.
,
2010
, “
Volume Preserving Nonlinear Density Filter Based on Heaviside Functions
,”
Struct. Multidiscipl. Optim.
,
41
(
4
), pp.
495
505
.
61.
Wang
,
C.
, and
Qian
,
X.
,
2018
, “
Heaviside Projection-Based Aggregation in Stress-Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
115
(
7
), pp.
849
871
.
62.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Duc Ngo
,
T.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
.
63.
Pozniak
,
A. A.
,
Smardzewski
,
J.
, and
Wojciechowski
,
K. W.
,
2013
, “
Computer Simulations of Auxetic Foams in Two Dimensions
,”
Smart Mater. Struct.
,
22
(
8
), p.
084009
.
64.
Zhang
,
X. G.
,
Ren
,
X.
,
Jiang
,
W.
,
Zhang
,
X. Y.
,
Luo
,
C.
,
Zhang
,
Y.
, and
Xie
,
Y. M.
,
2022
, “
A Novel Auxetic Chiral Lattice Composite: Experimental and Numerical Study
,”
Compos. Struct.
,
282
, p.
115043
.
65.
Pantz
,
O.
, and
Trabelsi
,
K.
,
2008
, “
A Post-Treatment of the Homogenization Method for Shape Optimization
,”
SIAM J. Control Optim.
,
47
(
3
), pp.
1380
1398
.
66.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
.
67.
Allaire
,
G.
,
Geoffroy-Donders
,
P.
, and
Pantz
,
O.
,
2019
, “
Topology Optimization of Modulated and Oriented Periodic Microstructures by the Homogenization Method
,”
Comput. Math. Appl.
,
78
(
7
), pp.
2197
2229
.
68.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graph.
,
34
(
4
), p.
135
.
69.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
Elsevier
,
Amsterdam
.
70.
Torquato
,
S.
, and
Haslach Jr
,
H. W.
,
2002
, “
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B62
B63
.
71.
Bar-Sinai
,
Y.
,
Hoyer
,
S.
,
Hickey
,
J.
, and
Brenner
,
M. P.
,
2019
, “
Learning Data-Driven Discretizations for Partial Differential Equations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
31
), pp.
15344
15349
.
72.
Choon
,
O. H.
,
Hoong
,
L. C.
, and
Huey
,
T. S.
,
2008
, “
A Functional Approximation Comparison Between Neural Networks and Polynomial Regression
,”
WSEAS Trans. Math.
,
7
(
6
), pp.
353
363
.
73.
Li
,
Q.
,
Xu
,
R.
,
Wu
,
Q.
, and
Liu
,
S.
,
2021
, “
Topology Optimization Design of Quasi-periodic Cellular Structures Based on Erode–Dilate Operators
,”
Comput. Methods Appl. Mech. Eng.
,
377
, p.
113720
.
74.
Luo
,
Y.
,
Hu
,
J.
, and
Liu
,
S.
,
2021
, “
Self-Connected Multi-Domain Topology Optimization of Structures With Multiple Dissimilar Microstructures
,”
Struct. Multidiscipl. Optim.
,
64
, pp.
125
140
.
75.
Logg
,
A.
,
Mardal
,
K.-A.
, and
Wells
,
G.
,
2012
,
Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book
,
Springer Science & Business Media
,
Berlin
.
76.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “Pytorch: An Imperative Style, High-Performance Deep Learning Library,”
Advances in Neural Information Processing Systems
,
Curran Associates Inc.
,
New York
, pp.
8024
8035
.
77.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.