Abstract

In engineering design, navigating complex decision-making landscapes demands a thorough exploration of the design, performance, and constraint spaces, often impeded by resource-intensive simulations. Data-driven methods can mitigate this challenge by harnessing historical data to delineate feasible domains, accelerate optimization, or evaluate designs. However, the implementation of these methods usually demands machine learning expertise and multiple trials to choose the right method and hyperparameters. This makes them less accessible for numerous engineering situations. Additionally, there is an inherent trade-off between training speed and accuracy, with faster methods sometimes compromising precision. In our paper, we demonstrate that a recently released general-purpose transformer-based classification model, TabPFN, is both fast and accurate. Notably, it requires no dataset-specific training to assess new tabular data. TabPFN is a prior-data fitted network, which undergoes a one-time offline training across a broad spectrum of synthetic datasets and performs in-context learning. We evaluated TabPFN’s efficacy across eight engineering design classification problems, contrasting it with seven other algorithms, including a state-of-the-art automated machine learning (AutoML) method. For these classification challenges, TabPFN consistently outperforms in speed and accuracy. It is also the most data-efficient and provides the added advantage of being differentiable and giving uncertainty estimates. Our findings advocate for the potential of pre-trained models that learn from synthetic data and require no domain-specific tuning to make data-driven engineering design accessible to a broader community and open ways to efficient general-purpose models valid across applications. Furthermore, we share a benchmark problem set for evaluating new classification algorithms in engineering design.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hollmann
,
N.
,
Müller
,
S.
,
Eggensperger
,
K.
, and
Hutter
,
F.
,
2023
, “
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
,”
International Conference on Learning Representations
,
Kigali, Rwanda
,
May 1–5
.
2.
Malak Jr.
,
R. J.
, and
Paredis
,
C. J. J.
,
2010
, “
Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101001
.
3.
Yoo
,
D.
,
Hertlein
,
N.
,
Chen
,
V. W.
,
Willey
,
C. L.
,
Gillman
,
A.
,
Juhl
,
A.
,
Anand
,
S.
,
Vemaganti
,
K.
, and
Buskohl
,
P. R.
,
2021
, “
Bayesian Optimization of Equilibrium States in Elastomeric Beams
,”
ASME J. Mech. Des.
,
143
(
11
), p.
111702
.
4.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
,
2022
, “
A Constraint-Handling Technique for Parametric Optimization and Control Co-Design
,”
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
,
V03AT03A009
.
5.
Massoudi
,
S.
,
Picard
,
C.
, and
Schiffmann
,
J.
,
2022
, “
Robust Design Using Multiobjective Optimisation and Artificial Neural Networks With Application to a Heat Pump Radial Compressor
,”
Des. Sci.
,
8
, p.
e1
.
6.
Wiest
,
T.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2022
, “
Robust Design of an Asymmetrically Absorbing Willis Acoustic Metasurface Subject to Manufacturing-Induced Dimensional Variations
,”
J. Acoust. Soc. Am.
,
151
(
1
), pp.
216
231
.
7.
Caputo
,
C.
, and
Cardin
,
M.-A.
,
2021
, “
The Role of Machine Learning for Flexibility and Real Options Analysis in Engineering Systems Design
,”
Proc. Des. Soc.
,
1
, pp.
3121
3130
.
8.
Sharpe
,
C.
,
Wiest
,
T.
,
Wang
,
P.
, and
Seepersad
,
C. C.
,
2019
, “
A Comparative Evaluation of Supervised Machine Learning Classification Techniques for Engineering Design Applications
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121404
.
9.
Chen
,
W.
, and
Fuge
,
M.
,
2018
, “
Active Expansion Sampling for Learning Feasible Domains in an Unbounded Input Space
,”
Struct. Multidiscip. Optim.
,
57
, pp.
925
945
.
10.
Li
,
H.
,
Qiu
,
L.
,
Wang
,
Z.
,
Zhang
,
S.
,
Tan
,
J.
, and
Zhang
,
L.
,
2022
, “
An Assembly Precision Prediction Method for Customized Mechanical Products Based on GAN-FTL
,”
Proc. Inst. Mech. Eng. B
,
236
(
3
), pp.
160
173
.
11.
Regenwetter
,
L.
,
Heyrani Nobari
,
A.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
12.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Internation Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, ACM, pp.
785
794
.
13.
Erickson
,
N.
,
Mueller
,
J.
,
Shirkov
,
A.
,
Zhang
,
H.
,
Larroy
,
P.
,
Li
,
M.
, and
Smola
,
A.
,
2020
, “
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
.”
arXiv
. https://arxiv.org/abs/2003.06505
14.
Regenwetter
,
L.
,
Weaver
,
C.
, and
Ahmed
,
F.
,
2023
, “
FRAMED: An AutoML Approach for Structural Performance Prediction of Bicycle Frames
,”
Comput. Aided Des.
,
156
, p.
103446
.
15.
Du
,
X.
,
Bilgen
,
O.
, and
Xu
,
H.
,
2021
, “
Generating Pseudo-data to Enhance the Performance of Classification-Based Engineering Design: A Preliminary Investigation
,”
ASME 2020 International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 16–19
,
V006T06A012
.
16.
Raffel
,
C.
,
Shazeer
,
N.
,
Roberts
,
A.
,
Lee
,
K.
,
Narang
,
S.
,
Matena
,
M.
,
Zhou
,
Y.
,
Li
,
W.
, and
Liu
,
P. J.
,
2020
, “
Exploring the Limits of Transfer Learning With a Unified Text-to-Text Transformer
,”
J. Mach. Learn. Res.
,
21
(
140
), pp.
1
67
.
17.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, Curran Associates, Inc.
18.
Hu
,
E. J.
,
Shen
,
Y.
,
Wallis
,
P.
,
Allen-Zhu
,
Z.
,
Li
,
Y.
,
Wang
,
S.
,
Wang
,
L.
, and
Chen
,
W.
,
2022
, “
LoRA: Low-Rank Adaptation of Large Language Models
,”
International Conference on Learning Representations
,
Virtual, Online
,
Apr. 25–29
.
19.
Li
,
Y.
,
Ildiz
,
M. E.
,
Papailiopoulos
,
D.
, and
Oymak
,
S.
,
2023
, “
Transformers as Algorithms: Generalization and Stability in In-Context Learning
,”
International Conference on Machine Learning
,
Honolulu, HI
,
July 23–29
, pp.
19565
19594
.
20.
Shwartz-Ziv
,
R.
, and
Armon
,
A.
,
2022
, “
Tabular Data: Deep Learning Is Not All You Need
,”
Inf. Fusion
,
81
, pp.
84
90
.
21.
Zhu
,
B.
,
Shi
,
X.
,
Erickson
,
N.
,
Li
,
M.
,
Karypis
,
G.
, and
Shoaran
,
M.
,
2023
, “
XTab: Cross-table Pretraining for Tabular Transformers
,”
International Conference on Machine Learning
,
Honolulu, HI
,
July 23–29
.
22.
Müller
,
S.
,
Hollmann
,
N.
,
Arango
,
S. P.
,
Grabocka
,
J.
, and
Hutter
,
F.
,
2022
, “
Transformers Can Do Bayesian Inference
,”
International Conference on Learning Representations.
,
Virtual, Online
,
Apr. 25–29
.
23.
Nagler
,
T.
,
2023
, “
Statistical Foundations of Prior-Data Fitted Networks
,”
International Conference on Machine Learning
,
Honolulu, HI
,
July 23–29
, pp.
25660
25676
.
24.
Kirsch
,
L.
,
Harrison
,
J.
,
Sohl-Dickstein
,
J.
, and
Metz
,
L.
,
2022
, “
General-Purpose In-Context Learning by Meta-Learning Transformers
,”
Workshop on Meta-Learning at Neural Information Processing Systems
,
New Orleans, LA
,
Dec. 2
.
25.
Regenwetter
,
L.
,
Curry
,
B.
, and
Ahmed
,
F.
,
2022
, “
BIKED: A Dataset for Computational Bicycle Design With Machine Learning Benchmarks
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031706
.
26.
Singh
,
A.
, and
Tucker
,
C. S.
,
2017
, “
A Machine Learning Approach to Product Review Disambiguation Based on Function, Form and Behavior Classification
,”
Decision Support Syst.
,
97
, pp.
81
91
.
27.
Rokach
,
L.
,
2010
, “
Ensemble-Based Classifiers
,”
Artif. Intell. Rev.
,
33
(
1
), pp.
1
39
.
28.
Heyrani Nobari
,
A.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design
,”
International Conference on Knowledge Discovery and Data Mining
,
Virtual Event Singapore
,
Aug. 14–181
, pp.
606
616
.
29.
Drela
,
M.
,
1989
, “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,”
Low Reynolds Number Aerodynamics
,
T. J.
Mueller
, ed.,
Lecture Notes in Engineering, Springer
,
Berlin/Heidelberg
, Vol.
54
, pp.
1
12
.
30.
Bryan
,
B.
,
Nichol
,
R. C.
,
Genovese
,
C. R.
,
Schneider
,
J.
,
Miller
,
C. J.
, and
Wasserman
,
L.
,
2005
, “
Active Learning for Identifying Function Threshold Boundaries
,”
Neural Information Processing Systems
,
Vancouver, Britisch Columbia, Canada
,
Dec. 5–8
.
31.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
32.
Lindauer
,
M.
,
Eggensperger
,
K.
,
Feurer
,
M.
,
Biedenkapp
,
A.
,
Deng
,
D.
,
Benjamins
,
C.
,
Ruhkopf
,
T.
,
Sass
,
R.
, and
Hutter
,
F.
,
2022
, “
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
,”
J. Mach. Learn. Res.
,
23
(
54
), pp.
1
9
.
You do not currently have access to this content.