Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Adaptable products are designed such that their configurations and parameters can be changed easily in the operation stage to satisfy changes in functional requirements. Design of adaptable products can extend lifespans of these products. A new robust adaptable product design method is introduced in this research to identify the optimal design including the product configurations and parameter values considering uncertainties in both product configurations and parameters. In this work, an AND-OR tree is used to model feasible design candidates and their configurations considering product adaptations, where each node represents a partial design solution. Different design candidates are created from the AND-OR tree through tree-based search, and a design candidate is defined by configurations of the original design and the adapted designs. Each configuration is further defined by parameters. A multi-level optimization method is used to obtain the optimal adaptable product design including its configurations and parameter values of these configurations. In this study, uncertainties of configurations are defined by probabilities for production adaptations, while uncertainties of parameters are defined by variations of parameter values. Both evaluation measures and their variations are considered in this robust adaptable product design method. A case study has been implemented to show how the developed method is used for the design of an adaptable mechanical system.

References

1.
Gu
,
P.
,
Hashemian
,
M.
, and
Nee
,
A. Y. C.
,
2004
, “
Adaptable Design
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
539
557
.
2.
Zhang
,
J.
,
Chen
,
Y.
,
Xue
,
D.
, and
Gu
,
P.
,
2014
, “
Robust Design of Configurations and Parameters of Adaptable Products
,”
Front. Mech. Eng.
,
9
(
1
), pp.
1
14
.
3.
Zhang
,
J.
,
Xue
,
D.
, and
Gu
,
P.
,
2014
, “
Robust Adaptable Design Considering Changes of Requirements and Parameters During Product Operation Stage
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1–4
), pp.
387
401
.
4.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(
6
), pp.
521
530
.
5.
Suh
,
N. P.
,
1990
,
The Principles of Design
,
Oxford University Press
,
Oxford
.
6.
Suh
,
N. P.
,
2001
,
Axiomatic Design: Advances and Applications
,
Oxford University Press, Oxford
.
7.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer
,
New York
.
8.
Erden
,
M. S.
,
Komoto
,
H.
,
Beek
,
T. J. V.
,
D’amelio
,
V.
,
Echavarria
,
E.
, and
Tomiyama
,
T.
,
2008
, “
A Review of Function Modeling: Approaches and Applications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
147
169
.
9.
Ma
,
J.
, and
Kremer
,
G. E. O.
,
2016
, “
A Systematic Literature Review of Modular Product Design (MPD) From the Perspective of Sustainability
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1509
1539
.
10.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J.
,
2006
,
Product Platform and Product Family Design: Methods and Applications
,
Springer
,
New York
.
11.
Gan
,
T. S.
, and
Grunow
,
M.
,
2016
, “
Concurrent Product and Supply Chain Design: A Literature Review, An Exploratory Research Framework and a Process for Modularity Design
,”
Int. J. Comput. Integr. Manuf.
,
29
(
12
), pp.
1255
1271
.
12.
Gu
,
P.
,
Xue
,
D.
, and
Nee
,
A. Y. C.
,
2009
, “
Adaptable Design: Concepts, Methods, and Applications
,”
J. Eng. Manuf.
,
223
(
11
), pp.
1367
1387
.
13.
Gu
,
P.
,
Xue
,
D.
,
Peng
,
Q.
, and
Zhang
,
J.
,
2024
,
Adaptable Design: Methods and Applications
,
Springer
,
New York
.
14.
Martinez
,
M.
, and
Xue
,
D.
,
2018
, “
A Modular Design Approach for Modeling and Optimization of Adaptable Products Considering the Whole Product Utilization Spans
,”
J. Mech. Eng. Sci.
,
232
(
7
), pp.
1146
1164
.
15.
Cheng
,
Q.
,
Li
,
W.
,
Xue
,
D.
,
Liu
,
Z.
,
Gu
,
P.
, and
Li
,
K.
,
2017
, “
Design of Adaptable Product Platform for Heavy-Duty Gantry Milling Machines Based on Sensitivity Design Structure Matrix
,”
J. Mech. Eng. Sci.
,
231
(
24
), pp.
4495
4511
.
16.
Koren
,
Y.
,
Hu
,
S. J.
,
Gu
,
P.
, and
Shpitalni
,
M.
,
2013
, “
Open-Architecture Products
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
719
729
.
17.
Zhang
,
J.
,
Xue
,
D.
, and
Gu
,
P.
,
2015
, “
Adaptable Design of Open Architecture Products With Robust Performance
,”
J. Eng. Des.
,
26
(
1–3
), pp.
1
23
.
18.
Chen
,
Y.
,
Peng
,
Q.
, and
Gu
,
P.
,
2018
, “
Methods and Tools for the Optimal Adaptable Design of Open-Architecture Products
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
991
1008
.
19.
Fletcher
,
D.
,
Brennan
,
R. W.
, and
Gu
,
P.
,
2009
, “
A Method for Quantifying Adaptability in Engineering Design
,”
Concurr. Eng.: Res. Appl.
,
17
(
4
), pp.
279
289
.
20.
Cheng
,
Q.
,
Zhang
,
G.
,
Liu
,
Z.
,
Gu
,
P.
, and
Cai
,
L.
,
2011
, “
A Structure-Based Approach to Evaluation Product Adaptability in Adaptable Design
,”
J. Mech. Sci. Technol.
,
25
(
5
), pp.
1081
1094
.
21.
Xue
,
D.
,
1997
, “
A Multilevel Optimization Approach Considering Product Realization Process Alternatives and Parameters for Improving Manufacturability
,”
J. Manuf. Syst.
,
16
(
5
), pp.
337
351
.
22.
Li
,
Y.
,
Xue
,
D.
, and
Gu
,
P.
,
2008
, “
Design for Product Adaptability
,”
Concurr. Eng.: Res. Appl.
,
16
(
3
), pp.
221
232
.
23.
Shukor
,
S. A.
, and
Axinte
,
D. A.
,
2009
, “
Manufacturability Analysis System: Issues and Future Trends
,”
Int. J. Prod. Res.
,
47
(
5
), pp.
1369
1390
.
24.
Li
,
Y.
,
Qiao
,
L. H.
,
Huang
,
Z. C.
, and
Anwer
,
N.
,
2021
, “
A Novel Method for Assemblability Evaluation of Non-ideal Cylindrical Parts Assembly
,”
Comput. Aided Des.
,
134
, p.
103002
.
25.
Gobbo
,
O.
, and
Borsato
,
M.
,
2021
, “
A Method to Support Design for Serviceability in the Early Stages of New Product Development
,”
Int. J. Comput. Integr. Manuf.
,
34
(
1
), pp.
41
56
.
26.
Yadav
,
D. P.
,
Patel
,
D. N.
, and
Morkos
,
B. W.
,
2018
, “
Development of Product Recyclability Index Utilizing Design for Assembly and Disassembly Principles
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031015
.
27.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
Wiley
,
New York
.
28.
Yang
,
H.
,
Xue
,
D.
, and
Tu
,
Y. L.
,
2006
, “
Modeling of the Non-linear Relations Among Different Design and Manufacturing Evaluation Measures for Multi-objective Optimal Concurrent Design
,”
Concurr. Eng.: Res. Appl.
,
14
(
1
), pp.
43
53
.
29.
Gadalla
,
M.
, and
Xue
,
D.
,
2017
, “
Recent Advances in Research on Reconfigurable Machine Tools: A Literature Review
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1440
1454
.
30.
Kalyanasundaram
,
V.
, and
Lewis
,
K.
,
2014
, “
A Function Based Approach for Product Integration
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041002
.
31.
Dogra
,
A.
,
Padhee
,
S. S.
, and
Singla
,
E.
,
2021
, “
An Optimal Architectural Design for Unconventional Modular Reconfigurable Manipulation System
,”
ASME J. Mech. Des.
,
143
(
6
), p.
063303
.
32.
Dogra
,
A.
,
Padhee
,
S. S.
, and
Singla
,
E.
,
2022
, “
Optimal Synthesis of Unconventional Links for Modular Reconfigurable Manipulators
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083304
.
33.
Wang
,
C. L.
,
Guo
,
H. W.
,
Liu
,
R. Q.
, and
Deng
,
Z. Q.
,
2023
, “
A Kirigami-Inspired Metamorphic Double-Loop Linkage With Multiple Single-Degree-of-Freedom Reconfiguration Branches
,”
ASME J. Mech. Des.
,
145
(
7
), p.
073301
.
34.
Hayat
,
A. A.
,
Yi
,
L.
,
Kalimuthu
,
M.
,
Elara
,
M. R.
, and
Wood
,
K. L.
,
2022
, “
Reconfigurable Robotic System Design With Application to Cleaning and Maintenance
,”
ASME J. Mech. Des.
,
144
(
6
), p.
063305
.
35.
Tang
,
H. Y.
,
Zhang
,
J. W.
,
Pan
,
L. Q.
, and
Zhang
,
D.
,
2023
, “
Optimum Design for a New Reconfigurable Two-Wheeled Self-balancing Robot Based on Virtual Equivalent Parallel Mechanism
,”
ASME J. Mech. Des.
,
145
(
5
), p.
053302
.
36.
Gadalla
,
M.
, and
Xue
,
D.
,
2018
, “
An Approach to Identify the Optimal Configurations and Reconfiguration Processes for Design of Reconfigurable Machine Tools
,”
Int. J. Prod. Res.
,
56
(
11
), pp.
3880
3900
.
37.
Seltman
,
H. J.
,
2012
,
Experimental Design and Analysis
,
Carnegie Mellon University
,
Pittsburgh, PA
.
38.
Fonseca
,
J. R.
,
Friswell
,
M. I.
, and
Lees
,
A. W.
,
2007
, “
Efficient Robust Design Via Monte Carlo Sample Reweighting
,”
Int. J. Numer. Methods Eng.
,
69
(
11
), pp.
2279
2301
.
39.
Kumar
,
K.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2008
, “
Robust Design Using Bayesian Monte Carlo
,”
Int. J. Numer. Methods Eng.
,
73
(
11
), pp.
1497
1517
.
40.
Hasenkamp
,
T.
,
Arvidsson
,
M.
, and
Gremyr
,
I.
,
2009
, “
A Review of Practices for Robust Design Methodology
,”
J. Eng. Des.
,
20
(
6
), pp.
645
657
.
41.
Hu
,
W.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2013
, “
New Approximation Assisted Multi-objective Collaborative Robust Optimization (New AA-McRO) Under Interval Uncertainty
,”
Struct. Multidiscipl. Optim.
,
47
(
1
), pp.
19
35
.
42.
Moslemipour
,
G.
,
Lee
,
T.
, and
Rilling
,
D.
,
2012
, “
A Review of Intelligent Approaches for Designing Dynamic and Robust Layouts in Flexible Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
60
(
1–4
), pp.
11
27
.
43.
Delorme
,
X.
,
Cerqueus
,
A.
,
Gianessi
,
P.
, and
Lamy
,
D.
,
2023
, “
RMS Balancing and Planning Under Uncertain Demand and Energy Cost Considerations
,”
Int. J. Prod. Econ.
,
261
, p.
Article Number 108873
.
44.
Caunhye
,
A. M.
, and
Cardin
,
M. A.
,
2017
, “
An Approach Based on Robust Optimization and Decision Rules for Analyzing Real Options in Engineering Systems Design
,”
IISE Trans.
,
49
(
8
), pp.
753
767
.
45.
Zhang
,
J.
,
Du
,
H.
,
Xue
,
D.
, and
Gu
,
P.
,
2021
, “
Robust Design Approach to the Minimization of Functional Performance Variations of Products and Systems
,”
Front. Mech. Eng.
,
16
(
1
), pp.
379
392
.
46.
Deabae
,
R.
, and
Xue
,
D.
,
2023
, “
Multi-level Design Optimization Considering Uncertainties in Configurations and Parameters
,”
Proceedings of the 33rd CIRP Design Conference
,
Sydney, Australia
,
May 17–19
.
You do not currently have access to this content.