Abstract

Critical infrastructure systems are prone to be a target of disruptions from either natural disasters or deliberate attacks that can cause a great magnitude of negative consequences. To withstand and reduce the impacts of disruptive events, it is beneficial to consider them in the early stage of design to create a configuration that can maintain its performance as much as possible. However, due to the complexity of modern systems, it is difficult to optimize the large-scale system design with complicated constraints directly. To overcome this issue, it is advantageous to tackle the problem with a state-of-the-art data-driven approach. However, a subsequent problem arises due to the limited amount of data for power systems available to the public. Hence, synthesized power systems that resemble existing networks are collected and processed, which can be utilized for implementing machine-learning models. The power system networks are represented as graphs with features holding information on the nodes and edges that relate to electrical components. Using the generated dataset, this research implements a generative approach based on Wasserstein generative adversarial networks (GAN) to create intelligent designs. Afterward, performance measures are employed to induce the generation of a population with more appealing characteristics. To demonstrate the practicality of the dataset on data-driven design, it was applied to train the generative model for a 57-bus system and the trained generator was employed to an optimization framework. The results have shown that the model could generate feasible designs of higher resilience and the framework was capable of finding an optimal network design with improved performance.

References

1.
Ouyang
,
M.
,
2014
, “
Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems
,”
Reliab. Eng. Syst. Saf.
,
121
, pp.
43
60
.
2.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Engineering Resilience Quantification and System Design Implications: A Literature Survey
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111408
.
3.
Wu
,
J.
, and
Wang
,
P.
,
2021
, “
Post-Disruption Performance Recovery to Enhance Resilience of Interconnected Network Systems
,”
Sustain. Resilient Infrastruct.
,
6
(
1–2
), pp.
107
123
.
4.
Yodo
,
N.
,
Wang
,
P.
, and
Zhou
,
Z.
,
2017
, “
Predictive Resilience Analysis of Complex Systems Using Dynamic Bayesian Networks
,”
IEEE Trans. Reliab.
,
66
(
3
), pp.
761
770
.
5.
Haley
,
B. M.
,
Dong
,
A.
, and
Tumer
,
I. Y.
,
2016
, “
A Comparison of Network-Based Metrics of Behavioral Degradation in Complex Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121405
.
6.
Amani
,
A. M.
, and
Jalili
,
M.
,
2021
, “
Power Grids as Complex Networks: Resilience and Reliability Analysis
,”
IEEE Access
,
9
, p.
119010
.
7.
Wang
,
S.
,
Gu
,
X.
,
Luan
,
S.
, and
Zhao
,
M.
,
2021
, “
Resilience Analysis of Interdependent Critical Infrastructure Systems Considering Deep Learning and Network Theory
,”
Int. J. Crit. Infrastruct. Prot.
,
35
, p.
100459
.
8.
Wang
,
S.
,
Guo
,
Z.
,
Huang
,
X.
, and
Zhang
,
J.
,
2024
, “
A Three-Stage Model of Quantifying and Analyzing Power Network Resilience Based on Network Theory
,”
Reliab. Eng. Syst. Saf.
,
241
, p.
109681
.
9.
Sharma
,
N.
,
Tabandeh
,
A.
, and
Gardoni
,
P.
,
2018
, “
Resilience Analysis: A Mathematical Formulation to Model Resilience of Engineering Systems
,”
Sustain. Resilient Infrastruct.
,
3
(
2
), pp.
49
67
.
10.
Trucco
,
P.
, and
Petrenj
,
B.
,
2023
, “
Characterisation of Resilience Metrics in Full-Scale Applications to Interdependent Infrastructure Systems
,”
Reliab. Eng. Syst. Saf.
,
235
, p.
109200
.
11.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Allocation for Early Stage Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091402
.
12.
Hulse
,
D.
, and
Hoyle
,
C.
,
2022
, “
Understanding Resilience Optimization Architectures: Alignment and Coupling in Multilevel Decomposition Strategies
,”
ASME J. Mech. Des.
,
144
(
11
), p.
111704
.
13.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
14.
Doersch
,
C.
,
2016
, “Tutorial on Variational Autoencoders,” arXiv preprint, arXiv:1606.05908.
15.
Ho
,
J.
,
Jain
,
A.
, and
Abbeel
,
P.
,
2020
, “
Denoising Diffusion Probabilistic Models
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
6840
6851
.
16.
Liu
,
Q.
,
Allamanis
,
M.
,
Brockschmidt
,
M.
, and
Gaunt
,
A.
,
2018
, “
Constrained Graph Variational Autoencoders for Molecule Design
,”
Adv. Neural Inf. Process. Syst.
,
31
, pp.
7795
7804
.
17.
Simonovsky
,
M.
, and
Komodakis
,
N.
,
2018
, “
Graphvae: Towards Generation of Small Graphs Using Variational Autoencoders
,” Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, Oct. 4–7, Proceedings, Part I 27,
Springer
, pp.
412
422
.
18.
De Cao
,
N.
, and
Kipf
,
T.
,
2018
, “MolGAN: An Implicit Generative Model for Small Molecular Graphs,” arXiv preprint arXiv:1805.11973.
19.
Wang
,
H.
,
Wang
,
J.
,
Wang
,
J.
,
Zhao
,
M.
,
Zhang
,
W.
,
Zhang
,
F.
,
Li
,
W.
,
Xie
,
X.
, and
Guo
,
M.
,
2019
, “
Learning Graph Representation With Generative Adversarial Nets
,”
IEEE. Trans. Knowl. Data. Eng.
,
33
(
8
), pp.
3090
3103
.
20.
Vignac
,
C.
,
Krawczuk
,
I.
,
Siraudin
,
A.
,
Wang
,
B.
,
Cevher
,
V.
, and
Frossard
,
P.
,
2022
, “Digress: Discrete Denoising Diffusion for Graph Generation,” arXiv preprint arXiv:2209.14734.
21.
Liu
,
C.
,
Fan
,
W.
,
Liu
,
Y.
,
Li
,
J.
,
Li
,
H.
,
Liu
,
H.
,
Tang
,
J.
, and
Li
,
Q.
,
2023
, “Generative Diffusion Models on Graphs: Methods and Applications,” arXiv preprint arXiv:2302.02591.
22.
Peyghami
,
S.
,
Davari
,
P.
,
Fotuhi-Firuzabad
,
M.
, and
Blaabjerg
,
F.
,
2019
, “
Standard Test Systems for Modern Power System Analysis: An Overview
,”
IEEE Ind. Electron. Mag.
,
13
(
4
), pp.
86
105
.
23.
Birchfield
,
A.
, “
Electric Grid Test Case Repository
,” https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
24.
Birchfield
,
A. B.
,
Xu
,
T.
,
Gegner
,
K. M.
,
Shetye
,
K. S.
, and
Overbye
,
T. J.
,
2016
, “
Grid Structural Characteristics as Validation Criteria for Synthetic Networks
,”
IEEE Trans. Power Syst.
,
32
(
4
), pp.
3258
3265
.
25.
Mohammadi
,
M. H.
, and
Saleh
,
K.
,
2021
, “
Synthetic Benchmarks for Power Systems
,”
IEEE Access
,
9
, p.
162706
.
26.
Wu
,
J.
, and
Wang
,
P.
,
2023
, “
Generative Design for Resilience of Interdependent Network Systems
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031705
.
27.
Chung
,
I.-B.
, and
Wang
,
P.
,
2024
, “
Generative Design for Power System Networks Using Wgan and Graph Performance Measures for Guided Generation
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
88360
,
Washington, DC
,
Aug. 25–28
,
American Society of Mechanical Engineers
, p.
V03AT03A040
.
28.
Drobyshevskiy
,
M.
, and
Turdakov
,
D.
,
2019
, “
Random Graph Modeling: A Survey of the Concepts
,”
ACM Comput. Surv. CSUR
,
52
(
6
), pp.
1
36
.
29.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.
30.
Wang
,
Z.
,
Sadeghian
,
H.
,
Elyas
,
S. H.
,
Zimmerman
,
R. D.
,
Schweitzer
,
E.
, and
Scaglione
,
A.
,
2018
, “Syngrid 1.0. 1 User’s Manual.”
31.
MathWorks Inc.
, 2022, “Matlab Version: 9.13.0 (R2022b),” The MathWorks Inc., Natick, MA.
32.
Zimmerman
,
R. D.
,
Murillo-Sánchez
,
C. E.
, and
Thomas
,
R. J.
,
2010
, “
Matpower: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education
,”
IEEE Trans. Power Syst.
,
26
(
1
), pp.
12
19
.
33.
Zimmerman
,
R. D.
, and
Murillo-Sánchez
,
C. E.
,
2024
, “MATPOWER (Version 8.0),” https://matpower.org
34.
Glover
,
J. D.
,
Overbye
,
T. J.
, and
Sarma
,
M. S.
,
2017
,
Power System Analysis & Design
, 6th ed.,
Cengage Learning
.
35.
Wang
,
Z.
,
Scaglione
,
A.
, and
Thomas
,
R. J.
,
2010
, “
Generating Statistically Correct Random Topologies for Testing Smart Grid Communication and Control Networks
,”
IEEE Trans. Smart Grid
,
1
(
1
), pp.
28
39
.
36.
Elyas
,
S. H.
, and
Wang
,
Z.
,
2016
, “
Improved Synthetic Power Grid Modeling With Correlated Bus Type Assignments
,”
IEEE Trans. Power Syst.
,
32
(
5
), pp.
3391
3402
.
37.
Elyas
,
S. H.
,
Wang
,
Z.
, and
Thomas
,
R. J.
,
2017
, “On the Statistical Settings of Generation and Load in a Synthetic Grid Modeling,” arXiv preprint arXiv:1706.09294.
38.
Sadeghian
,
H.
,
Elyas
,
S. H.
, and
Wang
,
Z.
,
2018
, “
A Novel Algorithm for Statistical Assignment of Transmission Capacities in Synthetic Grid Modeling
,”
2018 IEEE Power & Energy Society General Meeting (PESGM)
,
Portland, OR
,
Aug. 5–10
,
IEEE
, pp.
1
5
.
39.
Schweitzer
,
E.
, and
Scaglione
,
A.
,
2018
, “
A Mathematical Programming Solution for Automatic Generation of Synthetic Power Flow Cases
,”
IEEE Trans. Power Syst.
,
34
(
1
), pp.
729
741
.
40.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “Semi-Supervised Classification With Graph Convolutional Networks,” arXiv preprint arXiv:1609.02907.
41.
Morris
,
C.
,
Ritzert
,
M.
,
Fey
,
M.
,
Hamilton
,
W. L.
,
Lenssen
,
J. E.
,
Rattan
,
G.
, and
Grohe
,
M.
,
2019
, “
Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Honolulu, HI
,
Jan. 27–Feb. 1
, Vol.
33
, pp.
4602
4609
.
42.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
43.
Wang
,
Z.
,
Melkote
,
S.
, and
Rosen
,
D. W.
,
2023
, “
Generative Design by Embedding Topology Optimization Into Conditional Generative Adversarial Network
,”
ASME J. Mech. Des.
,
145
(
11
), p.
111702
.
44.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
45.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
46.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
International Conference on Machine Learning
,
Sydney, NSW, Australia
,
Aug. 6–11
,
PMLR
, pp.
214
223
.
47.
Gulrajani
,
I.
,
Ahmed
,
F.
,
Arjovsky
,
M.
,
Dumoulin
,
V.
, and
Courville
,
A. C.
,
2017
, “
Improved Training of Wasserstein Gans
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp.
5767
5777
.
48.
Zhou
,
D.
,
Hu
,
F.
,
Wang
,
S.
, and
Chen
,
J.
,
2021
, “
Power Network Robustness Analysis Based on Electrical Engineering and Complex Network Theory
,”
Physica A: Stat. Mech. Appl.
,
564
, p.
125540
.
49.
Aruna
,
S.
,
Suchitra
,
D.
,
Rajarajeswari
,
R.
, and
Fernandez
,
S. G.
,
2021
, “
A Comprehensive Review on the Modern Power System Reliability Assessment
,”
Int. J. Renewable Energy Res.
,
11
(
4
), pp.
1734
1747
.
50.
Wang
,
K.
,
Zhang
,
B.-h.
,
Zhang
,
Z.
,
Yin
,
X.-g.
, and
Wang
,
B.
,
2011
, “
An Electrical Betweenness Approach for Vulnerability Assessment of Power Grids Considering the Capacity of Generators and Load
,”
Physica A: Stat. Mech. Appl.
,
390
(
23–24
), pp.
4692
4701
.
51.
Bisong
,
E.
, and
Bisong
,
E.
,
2019
, “
Google Colaboratory
,” Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, pp.
59
64
.
You do not currently have access to this content.