Abstract

The design of the terminal operation tool of the in-orbit service of the space station faces the difficult problem of complicated operation in a small space. Anthropomorphic hand tools operation has long been a controversial topic, partly because of dexterity and adaptive capabilities. Here, we propose a novel underactuated hand named linkage spline dexterous hand (LSDH). The underactuated LSDH finger can adapt to irregular objects without requiring complicated parallel linkages. Furthermore, the grasping process of the finger is composed of two sequential steps: initial parallel pinching and indirect adaptive grasping. To delve into the intricacies of the grasping mechanism exhibited by the finger, kinematics, force analysis, and performance evaluation are performed. The contact force between the object and the middle phalange can reach 20 N, marking an advancement compared to the recent literature. To evaluate the performance of the LSDH finger, the dexterity and the workspace of the LSDH finger are analyzed. It only requires one motor to drive the movement of three phalanges to adapt to different shapes and different sizes (diameter 30 mm–60 mm). When the length of the proximal phalange and the proximal shaft rotation angle get the max value, the dexterity can reach the best effect. The dexterity of the finger is up to 0.9 after various size optimizations under the size limitation.

References

1.
Tomlinson
,
Z.
,
Gallagher
,
W.
,
Cassidy
,
J.
,
Roberts
,
B.
,
Facciol
,
K.
, and
Easley
,
J.
,
2022
, “
Lessons for Future In-Space Telerobotic Servicing From Robotic Refueling Mission
,”
IEEE Aerospace Conference (AERO)
,
Big Sky, MT
,
Mar. 5–12
, pp.
1
17
.
2.
Wan
,
W.
,
Sun
,
C.
, and
Yuan
,
J.
,
2021
, “
Three-Dimensional Multi-Finger Caging for Capturing Convex Objects in Space
,”
Acta Astronaut.
,
180
, pp.
273
291
.
3.
Huang
,
H.
,
Xie
,
X.
,
Tang
,
L.
,
Liu
,
H.
,
Liu
,
N.
, and
Li
,
M.
,
2022
, “
Autonomous Collision Avoidance Sample Grasping Method for Extraterrestrial Exploration
,”
Acta Astronaut.
,
193
, pp.
303
310
.
4.
Diftler
,
M. A.
,
Mehling
,
J. S.
,
Abdallah
,
M. E.
,
Radford
,
N. A.
,
Bridgwater
,
L. B.
,
Sanders
,
A. M.
,
Askew
,
R. S.
, et al.
,
2011
, “
Robonaut 2—The First Humanoid Robot in Space
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
2178
2183
.
5.
Wang
,
S.
,
Jiang
,
H.
,
Huh
,
T. M.
,
Sun
,
D.
,
Ruotolo
,
W.
,
Miller
,
M.
,
Roderick
,
W. R. T.
,
Stuart
,
H. S.
, and
Cutkosky
,
M. R.
,
2019
, “
Spinyhand: Contact Load Sharing for a Human-Scale Climbing Robot
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031009
.
6.
Lv
,
Z.
,
Xiao
,
F.
,
Chen
,
B.
,
Dong
,
R.
,
Liu
,
Z.
, and
Wang
,
Y.
,
2024
, “
Design and Performance Analysis of Wavy Nonrotating Pneumatic Soft Actuator
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
021011
.
7.
Meng
,
H.
,
Yang
,
K.
,
Zhou
,
L.
,
Shi
,
Y.
,
Cai
,
S.
, and
Bao
,
G.
,
2024
, “
Optimal Design of Linkage-Driven Underactuated Hand for Precise Pinching and Powerful Grasping
,”
IEEE Rob. Autom. Lett.
,
9
(
4
), pp.
3475
3482
.
8.
Bai
,
G.
,
Kong
,
X.
, and
Ritchie
,
J. M.
,
2017
, “
Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031017
.
9.
Guo
,
W. Z.
,
Gao
,
F.
, and
Mekid
,
S.
,
2010
, “
A New Analysis of Workspace Performances and Orientation Capability for 3-dof Planar Manipulators
,”
Int. J. Rob. Autom.
,
25
(
2
), pp.
89
101
.
10.
Kashef
,
S. R.
,
Amini
,
S.
, and
Akbarzadeh
,
A.
,
2020
, “
Robotic Hand: A Review on Linkage-Driven Finger Mechanisms of Prosthetic Hands and Evaluation of the Performance Criteria
,”
Mech. Mach. Theory
,
145
, p.
103677
.
11.
Kang
,
L.
,
Seo
,
J.-T.
,
Kim
,
S.-H.
,
Kim
,
W.-J.
, and
Yi
,
B.-J.
,
2019
, “
Design and Implementation of a Multi-Function Gripper for Grasping General Objects
,”
Appl. Sci.
,
9
(
24
), p.
5266
.
12.
Shiota
,
K.
,
Kokubu
,
S.
,
Tarvainen
,
T. V. J.
,
Sekine
,
M.
,
Kita
,
K.
,
Huang
,
S. Y.
, and
Yu
,
W.
,
2019
, “
Enhanced Kapandji Test Evaluation of a Soft Robotic Thumb Rehabilitation Device by Developing a Fiber-Reinforced Elastomer-Actuator Based 5-Digit Assist System
,”
Rob. Auton. Syst.
,
111
, pp.
20
30
.
13.
Llop-Harillo
,
I.
,
Pérez-González
,
A.
,
Starke
,
J.
, and
Asfour
,
T.
,
2019
, “
The Anthropomorphic Hand Assessment Protocol (AHAP)
,”
Rob. Auton. Syst.
,
121
, p.
103259
.
14.
Zhao
,
C.
,
Zeng
,
L.
,
Chen
,
M.
,
Lin
,
Y.
, and
Zhao
,
J.
,
2019
, “
Soft Under-Actuated Hand With Fin-Ray Structure
,”
J. Phys.: Conf. Ser.
,
1176
, p.
32034
.
15.
Liu
,
S.
,
Zhang
,
W.
, and
Sun
,
J.
,
2019
, “
A Coupled and Indirectly Self-Adaptive Under-Actuated Hand With Double-Linkage-Slider Mechanism
,”
Ind. Rob.: Int. J. Rob. Res. Appl.
,
46
(
5
), pp.
660
671
.
16.
Li
,
X.-L.
,
Wu
,
L.-C.
, and
Lan
,
T.-Y.
,
2018
, “
A 3D-Printed Robot Hand With Three Linkage-Driven Underactuated Fingers
,”
Int. J. Autom. Comput.
,
15
(
5
), pp.
593
602
.
17.
Salman
,
H. D.
,
Bakhy
,
S. H.
, and
Hamzah
,
M. N.
,
2020
, “
Design and Optimization of Coupled and Self-Adaptive of an Underactuated Robotic Hand Using Particle Swarm Optimization
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
928
(
2
), p.
22153
.
18.
Cerruti
,
G.
,
Chablat
,
D.
,
Gouaillier
,
D.
, and
Sophie
,
S.
,
2016
, “
ALPHA: A Hybrid Self-Adaptable Hand for a Social Humanoid Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems IROS
,
Daejeon, South Korea
,
Oct. 9–14
,
p. hal-01361054
.
19.
Long
,
Z.
,
Fu
,
H.
, and
Zhang
,
W.
,
2018
, “
A Novel Parallel-Pinching and Enveloping Robot Hand With Gear-Linkage Mechanisms
,”
2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Singapore
,
July. 18–20
, pp.
732
737
.
20.
Qian
,
K.
,
Xu
,
X.
,
Liu
,
H.
,
Bai
,
J.
, and
Luo
,
S.
,
2022
, “
Environment-Adaptive Learning From Demonstration for Proactive Assistance in Human–Robot Collaborative Tasks
,”
Rob. Auton. Syst.
,
151
, p.
104046
.
21.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2004
, “
Kinetostatic Analysis of Underactuated Fingers
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
211
221
.
22.
Zhang
,
M.
,
Deng
,
J.
,
Liu
,
Z.
, and
Zhou
,
Y.
,
2019
, “
Investigation Into Contributions of Static and Dynamic Loads to Compressive Residual Stress Fields Caused by Ultrasonic Surface Rolling
,”
Int. J. Mech. Sci.
,
163
, p.
105144
.
23.
Baumbach
,
S.
,
2017
, “
Investigation of Various Solution Strategies for the Time-Spectral Method for Incompressible, Viscous Flows
,”
Appl. Math. Model.
,
44
, pp.
223
235
.
24.
Morgan
,
A. S.
,
Bircher
,
W. G.
,
Calli
,
B.
, and
Dollar
,
A. M.
,
2019
, “
Learning From Transferable Mechanics Models: Generalizable Online Mode Detection in Underactuated Dexterous Manipulation
,”
2019 International Conference on Robotics & Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
5823
5829
.
25.
Yan
,
W.
,
Nie
,
H.
,
Chen
,
J.
, and
Han
,
D.
,
2017
, “
Optimal Design and Grasp Ability Evaluation of Four-Finger Tendon-Driven Hand
,”
Int. J. Adv. Rob. Syst.
,
14
(
6
), p.
256006148
.
26.
Son
,
H.
, and
Nenchev
,
D.
,
2016
, “
Reactionless Camera Inspection With a Free-Flying Space Robot Under Reaction Null-Space Motion Control
,”
Acta Astronaut.
,
128
, pp.
707
721
.
27.
Saini
,
S.
,
Orlando
,
M. F.
, and
Pathak
,
P. M.
,
2022
, “
Intelligent Control of a Master-Slave Based Robotic Surgical System
,”
J. Intell. Rob. Syst.
,
105
(
4
), p.
15094
.
28.
Yuan
,
H.
,
Zhang
,
W.
,
Dai
,
Y.
, and
Xu
,
W.
,
2021
, “
Analytical and Numerical Methods for the Stiffness Modeling of Cable-Driven Serpentine Manipulators
,”
Mech. Mach. Theory
,
156
, p.
104179
.
29.
Chen
,
Q.
, and
Yang
,
C.
,
2021
, “
Hybrid Algorithm for Multi-Objective Optimization Design of Parallel Manipulators
,”
Appl. Math. Model.
,
98
, pp.
245
265
.
30.
Li
,
G.
,
Liang
,
X.
,
Gao
,
Y.
,
Su
,
T.
,
Liu
,
Z.
, and
Hou
,
Z.
,
2024
, “
A Linkage-Driven Underactuated Robotic Hand for Adaptive Grasping and In-Hand Manipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
3
), pp.
3039
3035
.
31.
Bentzvi
,
P.
,
Danoff
,
J.
, and
Ma
,
Z.
,
2016
, “
The Design Evolution of a Sensing and Force-Feedback Exoskeleton Robotic Glove for Hand Rehabilitation Application
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051019
.
32.
Saggio
,
G.
, and
Bizzarri
,
M.
,
2014
, “
Feasibility of Teleoperations With Multi-Fingered Robotic Hand for Safe Extravehicular Manipulations
,”
Aerosp. Sci. Technol.
,
39
, pp.
666
674
.
You do not currently have access to this content.