Abstract

Based on the Chebyshev polynomial method (CPM) and interval theory, this article establishes the relationship between uncertain parameters and the dynamic response of a new cable-driven parallel robot (CDPR). Meanwhile, the time-varying characteristic of uncertain parameters in the dynamic uncertainty analysis of the model is considered in this article, effectively enhancing the accuracy of the dynamic response. The mechanical design and kinematic modeling are conducted, and the dynamic model is established based on the Lagrangian method. Thus, uncertain parameters including the length of the lifting arm L, the angle of the lifting arm rotation on the support plate α, and the length of the payload l are defined as interval variables, and the dynamic equilibrium equation with interval variables is derived. Numerical examples show that the CPM has a higher accuracy than the first-order interval perturbation method (FOIPM), and a higher efficiency than the Monte Carlo method (MCM) when it comes to solve the dynamic response of the CDPR with uncertain parameters. Experimental results demonstrate the effectiveness of dynamic modeling and the CPM in achieving efficient dynamic response and show that the largest relative error between the theoretical and experimental values for the dynamic response of the CDPR with uncertain parameter L is 1.466%; the largest relative error with uncertain parameter α is 0.783%; the largest relative error with uncertain parameter l is 0.857%; and the largest relative error with multiple uncertain parameters is 1.513%.

References

1.
Zhang
,
B.
,
Shang
,
W. W.
,
Cong
,
S.
, and
Li
,
Z. J.
,
2021
, “
Coordinated Dynamic Control in the Task Space for Redundantly Actuated Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2396
2407
.
2.
Yuan
,
H.
,
Courteille
,
E.
,
Gouttefarde
,
M.
, and
Hervé
,
P.-E.
,
2017
, “
Vibration Analysis of Cable-Driven Parallel Robots Based on the Dynamic Stiffness Matrix Method
,”
J. Sound Vib.
,
394
, pp.
527
544
.
3.
Chen
,
Q.
,
Zi
,
B.
,
Sun
,
Z.
,
Li
,
Y.
, and
Xu
,
Q. S.
,
2019
, “
Design and Development of a New Cable-Driven Parallel Robot for Waist Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1497
1507
.
4.
Yun
,
D.
, and
Fearing
,
R. S.
,
2019
, “
Cockroach Milli-robot With Improved Load Capacity
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
035001
.
5.
Mamidi
,
T. K.
, and
Bandyopadhyay
,
S.
,
2021
, “
Forward Dynamic Analyses of Cable-Driven Parallel Robots With Constant Input With Applications to Their Kinetostatic Problems
,”
Mech. Mach. Theory
,
163
, p.
104381
.
6.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addit. Manuf.
,
7
, pp.
27
44
.
7.
Duan
,
J.
,
Shao
,
Z.
,
Zhang
,
Z.
, and
Peng
,
F.
,
2022
, “
Performance Simulation and Energetic Analysis of TBot High-Speed Cable-Driven Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
024504
.
8.
Cheng
,
H. H.
, and
Lau
,
D.
,
2023
, “
Cable Attachment Optimization for Reconfigurable Cable-Driven Parallel Robots Based on Various Workspace Conditions
,”
IEEE Trans. Rob.
,
39
(
5
), pp.
3759
3775
.
9.
Zhou
,
B.
,
Li
,
S. P.
,
Zi
,
B.
,
Chen
,
B.
, and
Zhu
,
W. D.
,
2023
, “
Multi-objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm
,”
ASME J. Mech. Des.
,
145
(
8
), p.
083301
.
10.
Lee
,
C. H.
, and
Gwak
,
K. W.
,
2022
, “
Design of a Novel Cable-Driven Parallel Robot for 3d Printing Building Construction
,”
Int. J. Adv. Manuf. Technol.
,
123
(
11–12
), pp.
4353
4366
.
11.
Rong
,
B.
,
Rui
,
X. T.
,
Tao
,
L.
, and
Wang
,
G. P.
,
2019
, “
Theoretical Modeling and Numerical Solution Methods for Flexible Multibody System Dynamics
,”
Nonlinear Dyn.
,
98
(
2
), pp.
1519
1553
.
12.
Lenci
,
S.
,
Benedetti
,
K. C. B.
,
Rega
,
G.
, and
Gonçalves
,
P. B.
,
2024
, “
Stochastic Basins of Attraction for Uncertain Initial Conditions
,”
J. Sound Vib.
,
587
, p.
118488
.
13.
Zhou
,
B.
,
Zi
,
B.
,
Zeng
,
Y. S.
, and
Zhu
,
W. D.
,
2022
, “
Evidence-Theory-Based Kinematic Uncertainty Analysis of a Dual Crane System With Epistemic Uncertainty
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021004
.
14.
Shah
,
H.
,
Hosder
,
S.
, and
Winter
,
T.
,
2015
, “
Quantification of Margins and Mixed Uncertainties Using Evidence Theory and Stochastic Expansions
,”
Reliab. Eng. Syst. Safe.
,
138
, pp.
59
72
.
15.
Jiang
,
C.
,
Bi
,
R. G.
,
Lu
,
G. Y.
, and
Han
,
X.
,
2013
, “
Structural Reliability Analysis Using Non-probabilistic Convex Model
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
83
98
.
16.
Junfeng
,
H. E.
,
Guilin
,
W. E. N.
,
Liu
,
J.
,
Xue
,
L.
, and
Xie
,
Y. M.
,
2024
, “
A Modular Continuous Robot Constructed by Miura-Derived Origami Tubes
,”
Int. J. Mech. Sci.
,
261
, p.
108690
.
17.
Wei
,
P. F.
,
Liu
,
F. C.
,
Valdebenito
,
M.
, and
Beer
,
M.
,
2021
, “
Bayesian Probabilistic Propagation of Imprecise Probabilities With Large Epistemic Uncertainty
,”
Mech. Syst. Signal Process.
,
149
, p.
107219
.
18.
Wauters
,
J.
,
2022
, “
ERGO: A New Robust Design Optimization Technique Combining Multi-objective Bayesian Optimization With Analytical Uncertainty Quantification
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031702
.
19.
Qian
,
J.
, and
Dong
,
Y.
,
2022
, “
Uncertainty and Multi-criteria Global Sensitivity Analysis of Structural Systems Using Acceleration Algorithm and Sparse Polynomial Chaos Expansion
,”
Mech. Syst. Signal Process.
,
163
, p.
108120
.
20.
Witteveen
,
J. A. S.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2007
, “
Modeling Physical Uncertainties in Dynamic Stall Induced Fluid–Structure Interaction of Turbine Blades Using Arbitrary Polynomial Chaos
,”
Comput. Struct.
,
85
(
11–14
), pp.
866
878
.
21.
Ding
,
Y. J.
,
Wang
,
Z. C.
,
Chen
,
G.
,
Ren
,
W.-X.
, and
Xin
,
Y.
,
2022
, “
Markov Chain Monte Carlo-Based Bayesian Method for Nonlinear Stochastic Model Updating
,”
J. Sound Vib.
,
520
, p.
116595
.
22.
Xiang
,
W. W. K.
,
Yan
,
S. Z.
,
Wu
,
J. N.
, and
Niu
,
W. D.
,
2020
, “
Dynamic Response and Sensitivity Analysis for Mechanical Systems With Clearance Joints and Parameter Uncertainties Using Chebyshev Polynomials Method
,”
Mech. Syst. Signal Process.
,
138
, p.
106596
.
23.
Liang
,
G. M.
,
Li
,
H. Y.
,
Huang
,
Y. B.
,
Liu
,
L.
,
Li
,
J. L.
,
Chen
,
X.
, and
Qiu
,
W. B.
,
2023
, “
Multilevel Sampling Based Sparse Polynomial Expansion for Efficient Uncertainty Analysis of Mechanical System
,”
Mech. Syst. Signal Process.
,
186
, p.
109913
.
24.
Fröhlich
,
B.
,
Hose
,
D.
,
Dieterich
,
O.
,
Hanss
,
M.
, and
Eberhard
,
P.
,
2022
, “
Uncertainty Quantification of Large-Scale Dynamical Systems Using Parametric Model Order Reduction
,”
Mech. Syst. Signal Process.
,
171
, p.
108855
.
25.
Zhou
,
B.
,
Zi
,
B.
, and
Qian
,
S.
,
2017
, “
Dynamics-Based Nonsingular Interval Model and Luffing Angular Response Field Analysis of the DACS With Narrowly Bounded Uncertainty
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2599
2626
.
26.
Wang
,
Z.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2016
, “
Dynamics of Spatial Rigid–Flexible Multibody Systems With Uncertain Interval Parameters
,”
Nonlinear Dyn.
,
84
(
2
), pp.
527
548
.
27.
Li
,
J. L.
,
Huang
,
H. Z.
,
Yan
,
S. Z.
,
Yang
,
S. Z.
, and
Yang
,
Y. Q.
,
2017
, “
Kinematic Accuracy and Dynamic Performance of a Simple Planar Space Deployable Mechanism With Joint Clearance Considering Parameter Uncertainty
,”
Acta Astronaut.
,
136
, pp.
34
45
.
28.
Zhao
,
Q. Q.
,
Gao
,
J. K.
,
Zhao
,
D. T.
,
Yu
,
D. W.
, and
Hong
,
J.
,
2020
, “
A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081706
.
29.
Wu
,
F.
,
Hu
,
M.
,
Chen
,
K.
,
Yao
,
L. Y.
,
Ju
,
Z. G.
, and
Sun
,
X.
,
2019
, “
Stochastic Interval Analysis for Structural Natural Frequencies Based on Stochastic Hybrid Perturbation Edge-Based Smoothing Finite Element Method
,”
Eng. Anal. Boundary Elem.
,
103
, pp.
41
50
.
30.
Yin
,
H.
,
Yu
,
D. J.
,
Yin
,
S. W.
, and
Xia
,
B. Z.
,
2016
, “
Fuzzy Interval Finite Element/Statistical Energy Analysis for Mid-Frequency Analysis of Built-Up Systems With Mixed Fuzzy and Interval Parameters
,”
J. Sound Vib.
,
380
, pp.
192
212
.
31.
Nguyen
,
V. L.
,
Kuo
,
C. H.
, and
Lin
,
P. T.
,
2022
, “
Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031016
.
32.
Yang
,
Y. F.
,
Wu
,
Q. Y.
,
Wang
,
Y. L.
,
Qin
,
W. Y.
, and
Lu
,
K.
,
2019
, “
Dynamic Characteristics of Cracked Uncertain Hollow-Shaft
,”
Mech. Syst. Signal Process.
,
124
, pp.
36
48
.
33.
Zhang
,
Z. G.
,
Ma
,
X. X.
,
Hua
,
H. X.
, and
Liang
,
X. H.
,
2020
, “
Nonlinear Stochastic Dynamics of a Rub-Impact Rotor System With Probabilistic Uncertainties
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2229
2246
.
34.
Zhao
,
T.
,
Ye
,
T.
,
Chen
,
Y.
,
Jin
,
G.
, and
Liu
,
Z.
,
2024
, “
Vibroacoustic Analysis of Submerged Fluid-Filled Cylindrical Shell
,”
Int. J. Mech. Sci.
,
275
, p.
109330
.
35.
Jia
,
Z. Y.
,
Yang
,
Y. F.
,
Zheng
,
Q. Y.
, and
Deng
,
W. Q.
,
2022
, “
Dynamic Analysis of Jeffcott Rotor Under Uncertainty Based on Chebyshev Convex Method
,”
Mech. Syst. Signal Process.
,
167
, p.
108603
.
You do not currently have access to this content.