Abstract

The flasher origami structure is a complex origami design characterized by multilayered coupling properties and deployment by rotational motion around an axis. This structure boasts an expansion ratio of up to 1:1000, making it highly desirable as a deployable structure in engineering applications. This review provides a comprehensive overview of the geometric modeling and deployment mechanisms of flasher origami. The current application areas of such structures are also outlined, serving as a foundational reference for future research. By reviewing the historical evolution and major research topics related to flasher origami structures, this article categorizes related research into two main themes: theoretical research and applied research. Depending on the distinct needs of theoretical and applied research, the design methods and principles of flasher origami structures are adjusted, offering a roadmap for future studies. This article summarizes the deployment mechanisms and existing applications of flasher origami structures and provides insights into future research directions. The goal is to stimulate innovative applications and guide future research efforts. Finally, common challenges encountered in application scenarios, simulation analysis, usage limitations, and practical implementation of flasher origami structures are addressed, and a forward-looking perspective on the research prospects in this field is offered.

References

1.
Miura
,
K.
,
1980
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
The Institute of Space and Astronautical Science report
,
Tokyo, Japan
, 618, pp.
1
9
.
2.
Stavric
,
M.
, and
Wiltsche
,
A.
,
2014
, “
Quadrilateral Patterns for Rigid Folding Structures
,”
Int. J. Archit. Comput.
,
12
(
1
), pp.
61
79
.
3.
Parquet
,
D.
,
1973
, “
Design Data Handbook for Flexible Solar Array Systems
,”
Space Station Solar Array Technology Evaluation Program
,
Houston, TX
,
March 1973
,
No. LMSC-D159618
.
4.
Surya
,
P. C.
,
James
,
D.
, and
Jennie
,
O.
,
2006
, “
Design Evaluation of a Large Aperture Deployable Antenna
,”
Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Newport, RI
,
May 1–4
, p. 1603.
5.
Jones
,
P. A.
, and
Spence
,
B. R.
,
2011
, “
Spacecraft Solar Array Technology Trends
,”
IEEE Aerosp. Electron. Syst. Mag.
,
26
(
8
), pp.
17
28
.
6.
Arya
,
M.
,
Webb
,
D.
,
McGown
,
J.
,
Lisman
,
P. D.
,
Shaklan
,
S.
,
Bradford
,
S. C.
,
Steeves
,
J.
, et al
,
2017
, “
Starshade Mechanical Design for the Habitable Exoplanet Imaging Mission Concept (HabEx)
,”
Proc. Conference on Techniques and Instrumentation for Detection of Exoplanets VIII
,
San Diego, CA
,
Aug. 8–10
,
Vol. 10400, pp. 380–393
.
7.
Duan
,
B.
,
2020
, “
Large Spaceborne Deployable Antennas (LSDAs)—A Comprehensive Summary
,”
Chin. J. Electron.
,
29
(
1
), pp.
1
15
.
8.
Lokman
,
A. H.
,
Soh
,
P. J.
,
Azemi
,
S. N.
,
Lago
,
H.
,
Podilchak
,
S. K.
,
Chalermwisutkul
,
S.
,
Jamlos
,
M. F.
,
Al-Hadi
,
A. A.
,
Akkaraekthalin
,
P.
, and
Gao
,
S.
,
2017
,”
A Review of Antennas for Picosatellite Applications
, Int. J. Antennas Propag.,
2017
(
1
), p.
4940656
.
9.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R.
,
Daraio
,
C.
, and
Shea
,
K.
,
2019
, “
Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064069
.
10.
Srinivas
,
V.
, and
Harne
,
R. L.
,
2020
, “
Directing Acoustic Energy by Flasher-Based Origami Inspired Arrays
,”
J. Acoust. Soc. Am.
,
148
(
5
), pp.
2935
2944
.
11.
Zhu
,
Yi
,
Schenk
,
Mark
, and
Filipov
,
Evgueni T
,
2022
, “
A Review on Origami Simulations: From Kinematics, To Mechanics, Toward Multiphysics
,”
ASME J. Appl. Mech. Rev.
,
74
(
3
), pp.
1
28
.
12.
Lang
,
R. J.
,
2012
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
,
Boca Raton, FL
.
13.
Beech
,
R.
,
2009
,
The Practical Illustrated Encyclopedia of Origami: The Complete Guide to the Art of Paperfolding
,
Lorenz
,
London, UK
.
14.
Miura
,
K.
, and
Lang
,
R. J
,
2009
,
The Science of Miura-ori: A Rreview
, Origami 4,
A K Peters/CRC Press
,
Natick, MA
, pp.
1
14
.
15.
Shafer
,
J.
,
2001
,
Origami to Astonish and Amuse: Over 400 Original Models, Including Such” Classics” as the Chocolate-Covered Ant, the Transvestite Puppet, the Invisible Duck, and Many More!
,
Macmillan
,
New York
.
16.
Guest
,
S. D.
, and
Pellegrino
,
S. R. M.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
Proc. First International Seminar on Structural Morphology
,
Montpellier
,
Sept. 7–11
,
pp 203–215
.
17.
Lanford
,
W. E.
,
1961
, “Folding Apparatus,” US Patent No. 3,010,372.
18.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.
19.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46
), pp.
7003
7027
.
20.
Xu
,
R.
,
Zhang
,
X.
,
Ma
,
J.
,
Chen
,
Y.
,
Cao
,
Y.
, and
You
,
Z.
,
2018
, “
Folding a Rigid Flat Surface Around a Square Hub
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 42nd Mechanisms and Robotics Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
21.
Liu
,
P.
,
Ma
,
J.
,
Chen
,
Y.
,
Yuan
,
L.
,
Zhao
,
H.
, and
Wang
,
K.
,
2021
, “
The Kinematic Analysis and Bistable Characteristics of the Winding Origami Structure
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8B: 45th Mechanisms and Robotics Conference (MR)
,
Virtual, Online
,
Aug. 17–19
.
22.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays1
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
23.
Pehrson
,
N. A.
,
Ames
,
D. C.
,
Smith
,
S. P.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2020
, “
Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA J.
,
58
(
7
), pp.
3221
3228
.
24.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
.
25.
Wang
,
S.
,
Gao
,
Y.
,
Huang
,
H.
,
Li
,
B.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Design of Deployable Curved-Surface Rigid Origami Flashers
,”
Mech. Mach. Theory
,
167
p.
104512
.
26.
Quinn
,
G.
,
Deleuran
,
A. H.
,
Piker
,
D.
,
Brandt-Olsen
,
C.
,
Tamke
,
M.
,
Thomsen
,
M. R.
, and
Gengnagel
,
C.
,
2016
, “
Calibrated and Interactive Modelling of Form-Active Hybrid Structures
,”
Proc. Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS)
,
Tokyo, Japan
,
Sept. 16
.
27.
Piker
,
D.
,
2013
, “
Kangaroo: Form Finding With Computational Physics
,”
J. Archit. Des.
,
83
(
2
), pp.
136
137
.
28.
KaiSuto
,
2020
, “CRANE (by KaiSuto),” https://www.food4rhino.com/app/crane.
29.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Sang-Hoon Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.
30.
Bowen
,
L.
,
Trease
,
B.
,
Frecker
,
M.
, and
Simpson
,
T.
,
2016
, “
Dynamic Modeling and Analysis of an Origami-Inspired Optical Shield for the Starshade Spacecraft
,”
Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
, Stowe, VA, Sept. 28–30,
Paper No. SMASIS2016-9172, V001T01A012
.
31.
Hossain Bhuiyan
,
M. E.
,
Semer
,
D.
, and
Trease
,
B. P.
,
2017
, “
Dynamic Modeling and Analysis of Strain Energy and Centrifugal Force Deployment of an Origami Flasher
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 41st Mechanisms and Robotics Conference
,
Cleveland, OH
,
Aug. 6–9
.
32.
Lang
,
R. J.
,
2020
, “Tessellatica,” https://langorigami.com/article/tessellatica/, last modified February 4, 2020, Accessed July 19, 2024.
33.
MSC Software
, “MSC Software - Adams” http://www.mscsoftware.com/product/adams, last modified February 4, 2020, Accessed July 19, 2024.
34.
Arya
,
M.
,
Webb
,
D.
,
Bradford
,
S. C.
,
Adams
,
L.
,
Cormarkovic
,
V.
,
Wang
,
G.
,
Mobrem
,
M.
, et al
,
2021
, “
Origami-Inspired Optical Shield for a Starshade Inner Disk Testbed: Design, Fabrication, and Analysis
,”
AIAA Scitech 2021 Forum
,
Virtual, Online
,
11–15 & 19–21 January 2021
,
p. 0904
.
35.
Hibbitt
,
D.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2022
, ABAQUS, https://www.3ds.com/zh/products-services/simulia/products/abaqus, last modified February 6, 2022, Accessed July 19, 2024..
36.
Palmer
,
S. E.
, and
Hemenway
,
K.
,
1978
, “
Orientation and Symmetry: Effects of Multiple, Rotational, and Near Symmetries
,”
J. Exp. Psychol. Hum. Percept. Perform.
,
4
(
4
), p.
691
702
.
37.
Mitra
,
N. J.
,
Guibas
,
L. J.
, and
Pauly
,
M.
,
2006
, “
Partial and Approximate Symmetry Detection for 3D Geometry
,”
ACM Trans. Graphics
,
25
(
3
), pp.
560
568
.
38.
Arnheim
,
R.
,
1955
, “
Art and Visual Perception, a Psychology of the Creative Eye by Rudolf Arnheim
,”
J. Aesthetics Art Criticism
,
13
(
3
), pp.
411
412
.
39.
George
,
T.
,
Dutta
,
A. K.
,
Islam
,
M. S.
,
Zirbel
,
S. A.
,
Trease
,
B. P.
,
Thomson
,
M. W.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. H.
,
2015
, “
HanaFlex: A Large Solar Array for Space Applications
,”
Micro- and Nanotechnology Sensors, Systems, and Applications VII
,
Baltimore, MD
,
May 22
, p. 94671C.
40.
Wang
,
T.
, and
Santer
,
M. J.
,
2022
, “
An Origami-Based Rigid-Foldable Parabolic Reflector Concept
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA & Virtual
,
Jan. 3–7
,
p. 1885
.
41.
Tachi
,
T.
,
2011
,
Rigid-Foldable Thick Origami
, Vol.
Origami, 5(5)
,
A K Peters/CRC Press
,
Natick, MA
, pp.
253
264
.
42.
Zhang
,
M.
, and
Trease
,
B. P.
,
2018
, “
Design of Hinge-Line Geometry to Facilitate Non-Plastic Folding in Thin Metallic Origami-Inspired Devices
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 42nd Mechanisms and Robotics Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
43.
Snapmaker
, “Snapmaker J1s high speed idex 3D printer,” https://us.snapmaker.com/products/snapmaker-j1-independent-dual-extruder-3d-printer, last modified, April 2, 2024, Accessed July 30, 2024.
44.
Horvath
,
L.
,
2017
, “
Reviewing and Evaluating Pattern-Generation and Fabrication Methodologies for an Origami Flasher
,” Master's thesis, University of Toledo, Toledo, OH.
45.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092302
.
46.
Pehrson
,
N. A.
,
2019
, “
Developing Origami-Based Approaches to Realize Novel Architectures and Behaviors for Deployable Space Arrays
,” ProQuest Dissertations & Theses, 2019. Brigham Young University, Provo, UT.
47.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.
48.
Zirbel
,
S. A.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Deployment Methods for an Origami-Inspired Rigid-Foldable Array
,”
The 42nd Aerospace Mechanism Symposium
,
Baltimore, MD
,
May 1
,
pp. 189-194
.
49.
Ge
,
Q.
,
Dunn
,
C. K.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2014
, “
Active Origami by 4D Printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
50.
Qiu
,
C.
,
Qi
,
P.
,
Liu
,
H.
,
Althoefer
,
K.
, and
Dai
,
J. S.
,
2016
, “
Six-Dimensional Compliance Analysis and Validation of Orthoplanar Springs
,”
ASME J. Mech. Des.
,
138
(
4
), p.
042301
.
51.
Qiu
,
L.
,
Huang
,
G.
, and
Yin
,
S.
,
2017
, “
Design and Performance Analysis of Double C-Type Flexure Hinges
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
044503
.
52.
Qiu
,
L.
,
Yin
,
S.
, and
Xie
,
Z.
,
2016
, “
Failure Analysis and Performance Comparison of Triple-LET and LET Flexure Hinges
,”
J. Eng. Fail. Anal.
,
66
, pp.
35
43
.
53.
Wang
,
R.
, and
Zhang
,
X.
,
2017
, “
Optimal Design of a Planar Parallel 3-DOF Nanopositioner With Multi-Objective
,”
Mech. Mach. Theory
,
112
, pp.
61
83
.
54.
Gollnick
,
P. S.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
An Introduction to Multilayer Lamina Emergent Mechanisms
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081006
.
55.
Alfattani
,
R.
, and
Lusk
,
C.
,
2018
, “
A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism
,”
ASME J. Mech. Des.
,
140
(
12
), p.
125001
.
56.
Lobontiu
,
N.
,
Gress
,
T.
,
Munteanu
,
M. G.
, and
Ilic
,
B.
,
2019
, “
Stiffness Design of Circular-Axis Hinge, Self-Similar Mechanism With Large Out-of-Plane Motion
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092302
.
57.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
.
58.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2017
, “
Design and Analysis of Outside-Deployed Lamina Emergent Joint (OD-LEJ)
,”
Mech. Mach. Theory
,
114
, pp.
111
124
.
59.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Design and Analysis of a Variable Stiffness Inside-Deployed Lamina Emergent Joint
,”
Mech. Mach. Theory
,
120
, pp.
166
177
.
60.
Pehrson
,
N. A.
,
2019
, “
Developing Origami-Based Approaches to Realize Novel Architectures and Behaviors for Deployable Space Arrays
,” ProQuest Dissertations & Theses, Brigham Young University, Provo, UT.
61.
Semer
,
D. R. H.
,
2017
, “
Analysis of Centrifugal and Radial Corner-pull Deployment of Physical and Dynamic Models of an Origami Flasher
,”
Master's thesis
, University of Toledo, Toledo, OH, http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501854806721398, Accessed February 6, 2025.
62.
MathWorks
, MATLAB R2020b, https://www.mathworks.com/products/matlab.html, last modified February 5, 2020, Accessed July 21, 2024.
63.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
An Approach to Designing Deployable Mechanisms Based on Rigid Modified Origami Flashers
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082301
.
64.
Bruton
,
J.
,
Nelson
,
T.
,
Zimmerman
,
T.
,
Fernelius
,
J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Packing and Deploying Soft Origami to and From Cylindrical Volumes With Application to Automotive Airbags
,”
R. Soc. Open Sci.
,
3
(
9
), p.
160429
.
65.
Feng
,
Y.
,
Yan
,
W.
,
Song
,
J.
,
Hong
,
Z.
,
Qiu
,
H.
,
Cui
,
K.
,
Song
,
X.
, and
Tan
,
J.
,
2024
, “
Origami-Inspired Reconfigurable Soft Actuators for Soft Robotic Applications
,”
Adv. Mater. Technol.
,
9
(
9
), p.
2301924
.
66.
Hamza
,
M.
,
Zekios
,
C. L.
, and
Georgakopoulos
,
S. V.
,
2020
, “
A Thick Origami Reconfigurable and Packable Patch Array With Enhanced Beam Steering
,”
IEEE Trans. Antennas Propag.
,
68
(
5
), pp.
3653
3663
.
67.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
68.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
2021
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
69.
Kuipers
,
J. B.
,
1999
,
Quaternions and Rotation Sequences a Primer With Applications to Orbits, Aerospace and Virtual Reality
,
Princeton University Press
,
Princeton, NJ
.
70.
Yang
,
F.
,
Chen
,
Y.
,
Kang
,
R.
, and
Ma
,
J.
,
2016
, “
Truss Transformation Method to Obtain the Non-Overconstrained Forms of 3D Overconstrained Linkages
,”
Mech. Mach. Theory
,
102
, pp.
149
166
.
71.
Hartenburg
,
R.
,
Denavit
,
J.
, and
Freudenstein
,
F.
,
1965
, “
Kinematic Synthesis of Linkages
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
477
477
.
72.
Hemingway
,
E. G.
, and
O’Reilly
,
O. M.
,
2018
, “
Perspectives on Euler Angle Singularities, Gimbal Lock, and the Orthogonality of Applied Forces and Applied Moments
,”
Multibody Sys. Dyn.
,
44
(
1
), pp.
31
56
.
73.
Maxwell
,
J. C.
,
1864
, “
L. On the Calculation of the Equilibrium and Stiffness of Frames
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.
74.
Pellegrino
,
S.
,
1993
, “
Structural Computations With the Singular Value Decomposition of the Equilibrium Matrix
,”
Int. J. Solids Struct.
,
30
(
21
), pp.
3025
3035
.
75.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6R Foldable Frame and Its Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25
), pp.
4504
4514
.
76.
Song
,
C. Y.
, and
Chen
,
Y.
,
2012
, “
Multiple Linkage Forms and Bifurcation Behaviours of the Double-Subtractive-Goldberg 6R Linkage
,”
Mech. Mach. Theory
,
57
, pp.
95
110
.
77.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
(
17
), pp.
26
45
.
78.
Woodruff
,
S. R.
, and
Filipov
,
E. T.
,
2021
, “
Curved Creases Redistribute Global Bending Stiffness in Corrugations: Theory and Experimentation
,”
Meccanica
,
56
(
6
), pp.
1613
1634
.
79.
Sun
,
Y. M.
,
You
,
B. D.
,
Hao
,
P. B.
, and
Liang
,
D.
,
2017
, “
Pointing Behavior of Perimeter Truss Deployable Antenna With a Laminated Reflector
,”
Proc. IEEE International Conference on Cybernetics and Intelligent Systems (CIS)/IEEE Conference on Robotics, Automation and Mechatronics (RAM)
,
Ningbo, China
,
Nov. 19–21
, pp.
339
344
.
80.
Zeng
,
W. X.
,
Wang
,
W.
, and
Sonkusale
,
S.
,
2022
, “
Temperature Sensing Shape Morphing Antenna (ShMoA)
,”
Micromachines
,
13
(
10
), p.
1673
.
81.
Tang
,
Y. Q.
,
Shi
,
Z. Y.
,
Li
,
T. J.
, and
Wang
,
Z. W.
,
2019
, “
Double-Layer Cable-Net Structures for Deployable Umbrella Reflectors
,”
J. Aerosp. Eng.
,
32
(
5
), p.
04019068
.
82.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
83.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hart
,
V.
,
Price
,
G. N.
, and
Tachi
,
T.
,
2011
, “
(Non)Existence of Pleated Folds: How Paper Folds Between Creases
,”
Graphs Comb.
,
27
(
3
), pp.
377
397
.
84.
Seager
,
S.
,
Margaret
,
T.
,
William
,
S.
,
Mark
,
T.
, et al
,
2015
, “
The Exo-S probe class starshade mission
,”
Proc. SPIE 9605, Techniques and Instrumentation for Detection of Exoplanets VII
,
San Diego, CA
,
Sept. 16
, Paper No. 96050W.
85.
Webb
,
D.
,
Hirsch
,
B.
,
Bradford
,
C.
,
Steeves
,
J.
,
Lisman
,
D.
,
Shaklan
,
S.
,
Bach
,
V.
, and
Thomson
,
M.
,
2016
, “
Advances in Starshade Technology Readiness for an Exoplanet Characterizing Science Mission in the 2020s
,”
Proc. Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II
,
Edinburgh, UK
,
July 22
, p. 99126H.
86.
Casement
,
S.
,
Warwick
,
S.
,
Smith
,
D.
,
Ellis
,
S.
, and
Stover
,
J.
,
2016
, “
Results of Edge Scatter Testing for a Starshade Mission
,”
Proc. Conference on Space Telescopes and Instrumentation—Optical, Infrared, and Millimeter Wave
,
Edinburgh, UK
,
July 29
, p. 99043H.
87.
Bowen
,
L. A.
,
Baxter
,
W. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami
,”
Mech. Mach. Theory
,
77
, pp.
13
24
.
88.
Webb
,
D.
,
Hirsch
,
B.
,
Bach
,
V.
,
Sauder
,
J. F.
,
Bradford
,
S.
, and
Thomson
,
M.
,
2016
, “
Starshade Mechanical Architecture & Technology Effort
,”
Third AIAA Spacecraft Structures Conference
,
San Diego, CA
,
Jan. 4–8
,
p. 2165
.
89.
Sigel
,
D.
,
Trease
,
B. P.
,
Thomson
,
M. W.
,
Webb
,
D. R.
,
Willis
,
P.
, and
Lisman
,
P. D.
,
2014
, “
Application of Origami in the Starshade Spacecraft Blanket Design
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 38th Mechanisms and Robotics Conference
,
Buffalo, NY
,
Aug. 17–20
.
90.
Crill
,
B. P.
, and
Siegler
,
N.
,
2017
, “
Space Technology for Directly Imaging and Characterizing Exo-Earths
,”
Proceedings of Optical Engineering + Applications
,
San Diego, CA
,
5 Sept.
, Paper No. 103980H.
91.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
Lockette
,
P. v.
,
2015
, “
Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011010
.
92.
Lee
,
H.
, and
Alam
,
P.
,
2021
, “
The Design of Carbon Fibre Composite Origami Airbrakes for Endeavour’s Darwin I Rocket
,”
Compos. Sci.
,
5
(
6
), p.
147
.
93.
Zou
,
J.
,
Lin
,
Y.
,
Ji
,
C.
, and
Yang
,
H.
,
2018
, “
A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion
,”
Soft Rob.
,
5
(
2
), pp.
164
174
.
94.
Jin
,
Y.
,
Li
,
J.
,
Liu
,
S.
,
Cao
,
G.
, and
Liu
,
J.
,
2023
, “
A Worm-Inspired Robot Based on Origami Structures Driven by the Magnetic Field
,”
Bioinspir. Biomim.
,
18
(
4
), p.
046008
.
95.
Hu
,
F.
, and
Li
,
T.
,
2021
, “
An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype
,”
Actuators
,
10
(
4
), p.
67
.
You do not currently have access to this content.