Kinematic singularities of linkages are configurations where the differential mobility changes. Constraint singularities are critical points of the constraint mapping defining the loop closure constraints. Configuration space (c-space) singularities are points where the c-space ceases to be a smooth manifold. These singularity types are not identical and can neither be distinguished nor identified by simply investigating the rank deficiency of the constraint Jacobian (linear dependence of joint screws). C-space singularities are reflected by the c-space geometry. In a previous work, a kinematic tangent cone was introduced as an approximation of the c-space, defined as the set of tangents to smooth curves in c-space. Identification of kinematic singularities amounts to analyze the local geometry of the set of critical points. As a computational means, a kinematic tangent cone to the set of critical points is introduced in terms of Jacobian minors. Closed form expressions for the derivatives of the minors in terms of Lie brackets of joint screws are presented. A computational method is introduced to determine a polynomial system defining the kinematic tangent cone. The paper complements the recently proposed mobility analysis using the tangent cone to the c-space. This allows for identifying c-space and kinematic singularities as long as the solution set of the constraints is a real variety. The introduced approach is directly applicable to the higher-order analysis of forward kinematic singularities of serial manipulators. This is briefly addressed in the paper.

References

1.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singular Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
2.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
.
3.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.
4.
Bonev
,
I.
, and
Gosselin
,
C.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms Via Screw Theory
,”
ASME J. Mech. Des.
,
125
(3), pp.
573
581
.
5.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems—1
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.
6.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems—2
,”
Mech. Mach. Theory
,
25
(
1
), pp.
11
27
.
7.
Hunt
,
K. H.
,
1986
, “
Special Configurations of Robot-Arms Via Screw Theory
,”
Robotica
,
4
(3), pp.
171
179
.
8.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer
,
New York
.
9.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
10.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1995
, “
A Determination of Singular Configurations of Serial Non-Redundant Manipulators, and Their Escapement From Singularities Using Lie Products
,”
Computational Kinematics
,
J. P.
Merlet
and
B.
Ravani
, eds.,
Kluwer
, Dordrecht, The Netherlands, pp.
143
152
.
11.
Wolf
,
A.
, Ottaviano, E., Shohama, M., and Ceccarelli, M.,
2004
, “
Application of Line Geometry and Linear Complex Approximation to Singularity Analysis of the 3-DOF Capaman Parallel Manipulator
,”
Mech. Mach. Theory
,
39
(
1
), pp.
75
95
.
12.
Wang
,
S. L.
, and
Waldron
,
K. J.
,
1987
, “
A Study of the Singular Configurations of Serial Manipulators
,”
ASME J. Mech., Trans. Autom. Des.
,
109
(1), pp.
14
20
.
13.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Parenti Castelli
,
V.
, and
Innocenti
,
C.
,
1990
, “
Singularities, Configurations and Displacement Functions for Manipulators
,”
Int. J. Rob. Res.
,
5
(2), pp.
52
65
.
14.
Sugimoto
,
K.
,
Duffy
,
J.
, and
Hunt
,
K. H.
,
1982
, “
Special Configurations of Spatial Mechanisms and Robot Arms
,”
Mech. Mach. Theory
,
17
(2), pp.
119
132
.
15.
Wohlhart
,
K.
,
1999
, “
Degrees of Shakiness
,”
Mech. Mach. Theory
,
34
(7), pp.
1103
1126
.
16.
Chen
,
C.
,
2011
, “
The Order of Local Mobility of Mechanisms
,”
Mech. Mach. Theory
,
46
(9), pp.
1251
1264
.
17.
Kieffer
,
J.
,
1994
, “
Differential Analysis of Bifurcations and Isolated Singularities of Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
,
10
(
1
), pp.
1
10
.
18.
Lerbet
,
J.
,
1998
, “
Analytic Geometry and Singularities of Mechanisms
,”
ZAMM, Z. Angew. Math. Mech.
,
78
(
10
), pp.
687
694
.
19.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes
,
J.
, and
Sánchez
,
J. S.
,
2017
, “
Local Analysis of Helicoid-Helicoid Intersections in Reconfigurable Linkages
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031008
.
20.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages- Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(4), p.
041013
.
21.
Bandyopadhyay
,
S.
, and
Ghosal
,
A.
,
2004
, “
Analysis of Configuration Space Singularities of Closed-Loop Mechanisms and Parallel Manipulators
,”
Mech. Mach. Theory
,
39
(5), pp.
519
544
.
22.
Park
,
F. C.
, and
Kim
,
J. W.
,
1999
, “
Singularity Analysis of Closed Loop Kinematic Chains
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
32
38
.
23.
Brockett
,
R. W.
,
1984
, “
Robotic Manipulators and the Product of Exponentials Formula
,” Mathematical Theory of Networks and Systems (Lecture Notes in Control and Information Sciences, Vol.
58
), pp.
120
129
.
24.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
25.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularity as C-Space Singularities
,”
Advances in Robot Kinematics-Theory and Application
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
183
192
.
26.
Bochnak
,
J.
,
Coste
,
M.
, and
Roy
,
M.
,
1998
,
Real Algebraic Geometry
,
Springer-Verlag
,
Berlin
.
27.
Golubitsky
,
M.
, and
Guillemin
,
V.
,
1973
,
Stable Mappings and Their Singularities
,
Springer
,
New York
.
28.
Pai
,
D. K.
, and
Leu
,
M. C.
,
1992
, “
Genericity and Singularities of Robot Manipulators
,”
IEEE Trans. Rob. Autom
,
8
(
5
), pp.
545
559
.
29.
Gibson
,
C. G.
,
1979
,
Singular Points of Smooth Mappings
,
Pitman
,
London
.
30.
Whitney
,
H.
,
1965
,
Local Properties of Analytic Varieties, Differential and Combinatorial Topology: A Symposium in Honor of M. Morse
,
S. S.
Cairns
, ed.,
Princeton University Press
, Princeton, NJ.
31.
O'Shea
,
W.
,
2004
, “
Limits of Tangent Spaces to Real Surfaces
,”
Am. J. Math.
,
126
(
5
), pp.
951
980
.
32.
Müller
,
A.
,
2016
, “
Recursive Higher-Order Constraints for Linkages With Lower Linematic Pairs
,”
Mech. Mach. Theory
,
100
, pp.
33
43
.
33.
Müller
,
A.
, and
Shai
,
O.
,
2017
, “
Constraint Graphs for Combinatorial Mobility Determination
,”
Mech. Mach. Theory
,
108
, pp.
260
275
.
34.
Müller
,
A.
,
2014
, “
Implementation of a Geometric Constraint Regularization for Multibody System Models
,”
Arch. Mech. Eng.
,
61
(
2
), pp.
376
383
.
35.
Müller
,
A.
,
2015
, “
Representation of the Kinematic Topology of Mechanisms for Kinematic Analysis
,”
Mech. Sci.
,
6
, pp.
137
146
.
36.
Müller
,
A.
,
2017
, “
Topology, Kinematics, and Constraints of Multi-Loop Linkages
,”
Robotica
, accepted.
37.
Müller
,
A.
,
2012
, “
On the Manifold Property of the Set of Singularities of Kinematic Mappings: Genericity Conditions
,”
ASME J. Mech. Rob.
,
4
(
1
), p. 011006.
38.
Song
,
C. Y.
, and
Chen
,
Y.
,
2012
, “
A Family of Mixed Double-Goldberg 6R Linkages
,”
Proc. R. Soc. A
,
468
(2139), pp.
871
890
.
39.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
40.
Connelly
,
R.
, and
Servatius
,
H.
,
1994
, “
Higher-Order Rigidity–What Is the Proper Definition?
,”
Discrete Comput. Geom.
,
11
(2), pp.
193
200
.
41.
Tarnai
,
T.
, and
Lengyel
,
A.
,
2011
, “
A Remarkable Structure of Leonardo and a Higher-Order Infinitesimal Mechanism
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
591
604
.
42.
Donelan
,
P.
,
2007
, “
Singularity-Theoretic Methods in Robot Kinematics
,”
Robotica
,
25
(6), pp.
641
659
.
43.
Karger
,
A.
,
1996
, “
Singularity Analysis of Serial Robot-Manipulators
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
520
525
.
44.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
.
45.
Cox
,
D.
,
Little
,
J.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties and Algorithms
, 3rd ed.,
Springer
,
Berlin
.
You do not currently have access to this content.