According to Camus’ theorem, for a single degree-of-freedom (DOF) three-body system with the three instant centers staying coincident, a point embedded on a body traces a pair of conjugated curves on the other two bodies. This paper discusses a fundamental issue not addressed in Camus’ theorem in the context of higher order curvature theory. Following the Aronhold–Kennedy theorem, in a single degree-of-freedom three-body system, the three instant centers must lie on a straight line. This paper proposes that if the line of the three instant centers is stationary (i.e., slide along itself) on the line of the instant centers, a point embedded on a body traces a pair of conjugated curves on the other two bodies. Another case is that if the line of the three instant centers rotates about a stationary point, the stationary point embedded on a body also traces a pair of conjugated curves on the other two bodies. The paper demonstrates the use of instantaneous invariants to synthesize such a three-body system leading to a conjugate curve-pair generation. It is a supplement or extension of Camus’ theorem. Camus’ theorem may be regarded as a special singular case, in which all three instant centers are coincident.

References

1.
Litvin
,
F. L.
,
1989
,
Theory of Gearing
,
NASA Publication
,
Washington, DC
.
2.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge
, pp.
97
100
, 355–358.
3.
Mitome
,
K.
, and
Seki
,
K.
,
1983
, “
A New Continuous Contact Low-Noise Gear Pump
,”
J. Mech. Transm. Autom. Des.
,
105
(
4
), pp.
736
741
.
4.
Dong
,
H.
,
Ting
,
K. L.
,
Yu
,
B.
,
Liu
,
J.
, and
Wang
,
D.
,
2012
, “
Differential Contact Path and Conjugate Properties of Planar Gearing Transmission
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061010
.
5.
Yang
,
D. C.
,
Tong
,
S. H.
, and
Lin
,
J.
,
1999
, “
Deviation-Function Based Pitch Curve Modification for Conjugate Pair Design
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
579
586
.
6.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2007
, “
A New Look at the Ball-Disteli Diagram and Its Relevance to Spatial Gearing
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1362
1375
.
7.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2013
, “
On Martin Disteli’s Spatial Cycloidal Gearing
,”
Mech. Mach. Theory
,
60
(
1
), pp.
73
89
.
8.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2016
, “
A Spatial Version of Octoidal Gears Via the Generalized Camus Theorem
,”
ASME J. Mech. Robot.
8
(
2
), p.
021015
.
9.
Figliolini
,
G.
, and
Angeles
,
J.
,
2005
, “
Algorithms for Involute and Octoidal Bevel-Gear Generation
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
664
672
.
10.
Ting
,
K. L.
, and
Shyu
,
J. H.
,
1985
, “
Direct and Inverse Motions and Their Applications
,”
Proceedings of the Ninth OSU Applied Mechanisms Conference
,
Kansas City, MO
.
11.
Bottema
,
O.
,
1961
, “
Some Remarks on Theoretical Kinematics
,”
Proceedings of the International Conference for Teachers of Mechanisms
,
F. R.
Erskine Crossley
, ed.,
Yale University/The Shoe String Press
,
North Haven, CT
, pp.
159
167
.
12.
Veldkamp
,
G. R.
,
1967
, “
Canonical Systems and Instantaneous Invariants in Spatial Kinematics
,”
J. Mech.
,
2
(
3
), pp.
329
388
.
13.
Roth
,
B.
,
2015
, “
On the Advantages of Instantaneous Invariants and Geometric Kinematics
,”
Mech. Mach. Theory
,
89
(
1
), pp.
5
13
.
14.
Wu
,
L. I.
,
2003
, “
Calculating Conjugate Cam Profiles by Vector Equations
,”
Proc. Inst. Mech. Eng. Part C
,
217
(
10
), pp.
1117
1123
.
15.
Hsieh
,
H. A.
, and
Hsu
,
K. L.
,
2017
, “
Line-Envelope Generations Using the Concept of Instant Center
,”
Mech. Mach. Theory
,
116
(
1
), pp.
360
370
.
16.
Mallik
,
A. K.
,
Ghosh
,
A.
, and
Dittrich
,
G.
,
1994
,
Kinematic Analysis and Synthesis of Mechanisms
,
CRC Press
,
Boca Raton
.
17.
Hall
,
A. S.
,
1986
,
Kinematics and Linkage Design
,
Waveland Press Inc.
,
Long Grove
.
18.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol. II,
Prentice Hall
,
Englewood Cliffs, NJ
, p.
313
.
19.
Ting
,
K.-L.
, and
Chan
,
C. L.
,
2018
, “
Curvature Theory on Contact and Transfer Characteristics of Enveloping Curves
,”
Proceedings of the IDETC/MR
,
Quebec City, Quebec
,
Aug. 26–29
, p.
V05BT07A088
,
ASME
Paper No. DETC2018-86378.

Additional Resources

1.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover Publications
,
New York
, pp.
275
278
.
2.
Cera
,
M.
, and
Pennestrì
,
E.
,
2018
, “
Generalized Burmester Points Computation by Means of Bottema’s Instantaneous Invariants and Intrinsic Geometry
,”
Mech. Mach. Theory
,
129
, pp.
316
335
.
3.
Dooner
,
D. B.
,
2012
,
Kinematic Geometry of Gearing
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
4.
Gupta
,
K. K.
,
1978
, “
A Direct Method for the Evaluation of Instantaneous Invariants of a Given Motion
,”
Mech. Mach. Theory
,
13
(
6
), pp.
567
576
.
5.
Hunt
,
K. H.
,
1979
, “
Envelopes and Line-Loci From the Planar Four-Bar Linkage
,” Introductory Theory and Applications,
Proceedings of the Fifth World Congress on the Theory of Machines and Mechanisms
, pp.
522
525
.
6.
McCarthy
,
J. M.
, and
Roth
,
B.
,
1981
, “
The Curvature Theory of Line Trajectories in Spatial Kinematics
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
718
724
.
7.
McCarthy
,
J. M.
,
1987
, “
On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories
,”
ASME J. Mech. Des.
,
109
(
1
), pp.
101
106
.
8.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, MA
, pp.
8
11
.
9.
Roth
,
B.
, and
Yang
,
A. T.
,
1977
, “
Application of Instantaneous Invariants to the Analysis and Synthesis of Mechanisms
,”
J. Eng. Ind.
,
99
(
1
), pp.
97
103
.
10.
Sandor
,
G. N.
, and
Freudenstein
,
F.
,
1967
, “
Higher-Order Plane Motion Theories in Kinematic Synthesis
,”
J. Eng. Ind.
,
89
(
2
), pp.
223
230
.
11.
Ting
,
K.-L.
, and
Yu
,
Z.
,
2017
, “
Conjugation Curvature Theory of Higher Pairs
,”
Proceedings of the IDETC/MR
,
Cleveland, OH
,
Aug. 6–9
, p.
V05BT08A082
,
ASME
Paper No. DETC2017-68285.
12.
Vinogradov
,
S.
,
2000
,
Fundamentals of Kinematics and Dynamics of Machines and Mechanisms
,
CRC Press
,
Boca Raton, FL
, p.
135
.
13.
Wang
,
W.
, and
Wang
,
D. L.
,
2010
, “
Curvature Theory of the Envelop Curve/Surface for a Line in Planar Motion and a Plane in Spatial Motion
,”
34th Annual Mechanisms and Robotics Conference
, Parts A and B,
Montreal, Quebec
,
Aug. 15–18
, pp.
1653
1662
.
You do not currently have access to this content.