This paper presents a novel three degrees-of-freedom (DOF) compliant parallel mechanism (CPM) with a fully decoupled spatial motion (θXθYZ) and optimized mechanical properties. To design the CPM using the beam-based structural optimization method, several novel criteria for synthesizing three-legged CPMs with fully decoupled motions are derived. The obtained results suggest that the synthesized CPM delivers a diagonal compliance matrix, a large workspace of 10deg×10deg×7mm, fast dynamic response of 100Hz, and good stiffness performance whereby the translational and rotational stiffness ratios are ∼3600 and ∼570, respectively. A prototype of the synthesized CPM is fabricated using one of the three-dimensional (3D) printing technologies, electron beam melting (EBM). Experimental results have shown that the 3D printed CPM can produce the full workspace with deterministic mechanical properties whereby the highest deviations between the theoretical and experimental results are 11.2% and 1% for stiffness and dynamic behaviors, respectively. Importantly, the decoupled-motion characteristic is also verified via an energy approach, i.e., the energies of the undesired parasitic motions are minor (<1%) as compared with the energy of the desired motion. In addition, several comparisons are conducted to clarify the advantages of the synthesized CPM to the existing designs. All these investigations suggest that the proposed CPM can be used in precision positioning systems due to the good stiffness characteristics, large workspace, fast dynamic response, and decoupled output motions.

References

1.
Teo
,
T.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2014
,
Compliant Manipulators
, book section 102,
Springer
,
London
, pp.
2229
2300
.
2.
Teo
,
T. J.
,
Chen
,
I. M.
,
Yang
,
G.
, and
Lin
,
W.
,
2007
, “
A Novel Actuator for High-Precision Alignment in a Nano-Imprint Multi-Layers-Interconnection Fabrication
,”
IEEE International Conference on Robotics and Automation
,
Roma, Italy
, pp.
1419
1424
.
3.
Teo
,
T. J.
,
Bui
,
V. P.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2015
, “
Millimeters-Stroke Nanopositioning Actuator With High Positioning and Thermal Stability
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2813
2823
.
4.
Xu
,
Q.
,
2015
, “
Design of a Large-range Compliant Rotary Micropositioning Stage With Angle and Torque Sensing
,”
IEEE Sens. J.
,
15
(
4
), pp.
2419
2430
.
5.
Xiao
,
S.
, and
Li
,
Y.
,
2013
, “
Optimal Design, Fabrication, and Control of An Xy Micropositioning Stage Driven by Electromagnetic Actuators
,”
IEEE Trans. Ind. Electron.
,
60
(
10
), pp.
4613
4626
.
6.
Yangmin
,
L.
, and
Qingsong
,
X.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based Xy Parallel Micromanipulator
,”
IEEE Trans. Robotics
,
25
(
3
), pp.
645
657
.
7.
Hui
,
T.
, and
Yangmin
,
L.
,
2013
, “
Design, Analysis, and Test of a Novel 2-DOF Nanopositioning System Driven by Dual Mode
,”
IEEE Trans. Robotics
,
29
(
3
), pp.
650
662
.
8.
Kim
,
H.
, and
Gweon
,
D.-G.
,
2012
, “
Development of a Compact and Long Range Xyz Nano-Positioning Stage
,”
Rev. Sci. Instrum.
,
83
(
8
), p.
085102
.
9.
Kim
,
H.-Y.
,
Ahn
,
D.-H.
, and
Gweon
,
D.-G.
,
2012
, “
Development of a Novel 3-Degrees of Freedom Flexure Based Positioning System
,”
Rev. Sci. Instrum.
,
83
(
5
), p.
055114
.
10.
Bhagat
,
U.
,
Shirinzadeh
,
B.
,
Clark
,
L.
,
Chea
,
P.
,
Qin
,
Y.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2014
, “
Design and Analysis of a Novel Flexure-Based 3-DOF Mechanism
,”
Mech. Machine Theory
,
74
, pp.
173
187
.
11.
Tanikawa
,
T.
,
Arai
,
T.
, and
Koyachi
,
N.
,
1999
, “
Development of Small-Sized 3 DOF Finger Module in Micro Hand for Micro Manipulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Kyongju, South Korea
,
Oct. 17–21
, IEEE, Hoboken, NJ, Vol.
2
, pp.
876
881
.
12.
Li
,
Y.
, and
Xu
,
Q.
,
2011
, “
A Totally Decoupled Piezo-Driven Xyz Flexure Parallel Micropositioning Stage for Micro/nanomanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
2
), pp.
265
279
.
13.
Xiao
,
X.
, and
Yangmin
,
L.
,
2014
, “
Development and Control of a Compact 3-DOF Micromanipulator for High-Precise Positioning
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp.
1480
1485
.
14.
Wu
,
T. L.
,
Chen
,
J. H.
, and
Chang
,
S. H.
,
2008
, “
A Six-DOF Prismatic-Spherical-Spherical Parallel Compliant Nanopositioner
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
55
(
12
), pp.
2544
2551
.
15.
Shin
,
H.
, and
Moon
,
J. H.
,
2014
, “
Design of a Double Triangular Parallel Mechanism for Precision Positioning and Large Force Generation
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
862
871
.
16.
Mukhopadhyay
,
D.
,
Dong
,
J.
,
Pengwang
,
E.
, and
Ferreira
,
P.
,
2008
, “
A SOI-MEMS-based 3-DOF Planar Parallel-Kinematics Nanopositioning Stage
,”
Sens. Actuators, A.
,
147
(
1
), pp.
340
351
.
17.
Brouwer
,
D. M.
,
de Jong
,
B. R.
, and
Soemers
,
H. M. J. R.
,
2010
, “
Design and Modeling of a Six DOFs Mems-Based Precision Manipulator
,”
Precision Eng.
,
34
(
2
), pp.
307
319
.
18.
Jong
,
B. R. d.
,
Brouwer
,
D. M.
,
Boer
,
M. J. d.
,
Jansen
,
H. V.
,
Soemers
,
H. M. J. R.
, and
Krijnen
,
G. J. M.
,
2010
, “
Design and Fabrication of a Planar Three-DOFs MEMS-Based Manipulator
,”
J. Microelectromech. Syst.
,
19
(
5
), pp.
1116
1130
.
19.
Lum
,
G. Z.
,
Teo
,
T. J.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
Sitti
,
M.
,
2015
, “
Structural Optimization for Flexure-Based Parallel Mechanisms – Towards Achieving Optimal Dynamic and Stiffness Properties
,”
Precision Eng.
,
42
, pp.
195
207
.
20.
Wang
,
R.
, and
Zhang
,
X.
,
2018
, “
Parameters Optimization and Experiment of a Planar Parallel 3-DOF Nanopositioning System
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2388
2397
.
21.
Wang
,
R.
, and
Zhang
,
X.
,
2017
, “
Optimal Design of a Planar Parallel 3-DOF Nanopositioner With Multi-Objective
,”
Mech. Machine Theory
,
112
, pp.
61
83
.
22.
Pham
,
M. T.
,
Teo
,
T. J.
, and
Yeo
,
S. H.
,
2017
, “
Synthesis of Multiple Degrees-of-Freedom Spatial-Motion Compliant Parallel Mechanisms With Desired Stiffness and Dynamics Characteristics
,”
Precision Eng.
,
47
, pp.
131
139
.
23.
Pham
,
M. T.
,
Teo
,
T. J.
,
Yeo
,
S. H.
,
Wang
,
P.
, and
Nai
,
M. L. S.
,
2017
, “
A 3D-Printed Ti-6Al-4V 3-DOF Compliant Parallel Mechanism for High Precision Manipulation
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2359
2368
.
24.
Pham
,
M. T.
,
Teo
,
T. J.
,
Yeo
,
S. H.
,
Wang
,
P.
, and
Nai
,
M. L. S.
,
2017
, “
Synthesis and Evaluation of a High Precision 3D-Printed Ti6Al4V Compliant Parallel Manipulator
,”
IOP. Conf. Ser.: Mater. Sci. Eng.
,
280
(
1
), p.
012040
.
25.
Teo
,
T. J.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2014
, “
A Large Deflection and High Payload Flexure-Based Parallel Manipulator for UV Nanoimprint Lithography: Part I. Modeling and Analyses
,”
Precision Eng.
,
38
(
4
), pp.
861
871
.
26.
Wang
,
P.
,
Tan
,
X.
,
Nai
,
M. L. S.
,
Tor
,
S. B.
, and
Wei
,
J.
,
2016
, “
Spatial and Geometrical-Based Characterization of Microstructure and Microhardness for An Electron Beam Melted Ti-6Al-4V Component
,”
Mater. Des.
,
95
, pp.
287
295
.
27.
Wang
,
P.
,
Nai
,
M. L. S.
,
Tan
,
X.
,
Vastola
,
G.
,
Srinivasan
,
R.
,
Sin
,
W. J.
,
Tor
,
S. B.
,
Pei
,
Q. X.
, and
Wei
,
J.
,
2016
, “
Recent Progress of Additive Manufactured Ti-6Al-4V by Electron Beam Melting
,”
Proceedings of the 2016 Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
8
10
.
28.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
29.
Teo
,
T. J.
,
Chen
,
I. M.
,
Yang
,
G.
, and
Lin
,
W.
,
2010
, “
A Generic Approximation Model for Analyzing Large Nonlinear Deflection of Beam-Based Flexure Joints
,”
Precision Eng.
,
34
(
3
), pp.
607
618
.
You do not currently have access to this content.