Abstract

Patients suffering from stroke need to undergo a standard and intensive rehabilitation therapy. The rehabilitation training consists of three sequential stages: the first stage is controlled joint movement under external actuator, the second stage deals with supporting the movements by providing assistive force, and the last stage provides variety and difficulty to exercises. Most of the exoskeletons developed so far for rehabilitation are restricted to a particular type of activity. Although a few exoskeletons incorporate different modes of rehabilitation, those are software controlled requiring sensory data acquisition and complex control architecture. To bridge this gap, a portable elbow exoskeleton has been developed for delivering three stages of rehabilitation in a single structure without affecting the range of motion and safety features. Use of electric motor and springs have been arranged in the actuation mechanism to minimize the energy consumption. The developed exoskeleton enhances torque to weight ratio compared to existing models, and all the three modes of rehabilitation have been controlled using a single motor.

References

1.
Feigin
,
V. L.
,
Forouzanfar
,
M. H.
,
Krishnamurthi
,
R.
,
Mensah
,
G. A.
,
Connor
,
M.
,
Bennett
,
D. A.
,
Moran
,
A. E.
,
Sacco
,
R. L.
,
Anderson
,
L.
, and
Truelsen
,
T.
,
2014
, “
Global and Regional Burden of Stroke During 1990–2010: Findings From the Global Burden of Disease Study 2010
,”
Lancet
,
383
(
9913
), pp.
245
254
. 10.1016/s0140-6736(13)61953-4
2.
Saka
,
Ö.
,
McGuire
,
A.
, and
Wolfe
,
C.
,
2009
, “
Cost of Stroke in the United Kingdom
,”
Age Ageing
,
38
(
1
), pp.
27
32
. 10.1093/ageing/afn281
3.
Lo
,
A. C.
,
Guarino
,
P. D.
,
Richards
,
L. G.
,
Haselkorn
,
J. K.
,
Wittenberg
,
G. F.
,
Federman
,
D. G.
,
Ringer
,
R. J.
,
Wagner
,
T. H.
,
Krebs
,
H. I.
, and
Volpe
,
B. T.
,
2010
, “
Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke
,”
N. Engl. J. Med.
,
362
(
19
), pp.
1772
1783
. 10.1056/NEJMoa0911341
4.
Manna
,
S. K.
, and
Dubey
,
V. N.
,
2016
,
Upper Arm Exoskeleton – What Specifications Will Meet Users’ Acceptability?
,
Nova Science Publisher
,
New York
, pp.
123
169
.
5.
Proietti
,
T.
,
Crocher
,
V.
,
Roby-Brami
,
A.
, and
Jarrassé
,
N.
,
2016
, “
Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies
,”
IEEE Rev. Biomed. Eng.
,
9
, pp.
4
14
. 10.1109/RBME.2016.2552201
6.
Pineda-Rico
,
Z.
,
De Lucio
,
J. A. S.
,
Martinez Lopez
,
F. J.
, and
Cruz
,
P.
,
2016
, “
Design of an Exoskeleton for Upper Limb Robot-Assisted Rehabilitation Based on Co-Simulation
,”
J. Vibroeng.
,
18
(
5
), pp.
3269
3278
. 10.21595/jve.2016.16857
7.
Chonnaparamutt
,
W.
, and
Supsi
,
W.
,
2016
, “
SEFRE: Semiexoskeleton Rehabilitation System
,”
Appl. Bionics Biomech.
,
2016
, pp.
1
12
. 10.1155/2016/8306765
8.
Beer
,
R. F.
,
Naujokas
,
C.
,
Bachrach
,
B.
, and
Mayhew
,
D.
,
2010
, “
Development and Evaluation of a Gravity Compensated Training Environment for Robotic Rehabilitation of Post-Stroke Reaching
,”
Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2010)
,
Scottsdale, AZ
,
Oct. 19–22
, pp.
205
210
.
9.
Kolář
,
P.
,
2013
,
Clinical Rehabilitation
,
Rehabilitation Prague School
,
Prague
.
10.
Jarrassé
,
N.
,
Proietti
,
T.
,
Crocher
,
V.
,
Robertson
,
J.
,
Sahbani
,
A.
,
Morel
,
G.
, and
Roby-Brami
,
A.
,
2014
, “
Robotic Exoskeletons: A Perspective for the Rehabilitation of arm Coordination in Stroke Patients
,”
Front. Hum. Neurosci.
,
8
, pp.
1
13
. 10.3389/fnhum.2014.00947
11.
Wolbrecht
,
E. T.
,
Chan
,
V.
,
Reinkensmeyer
,
D. J.
, and
Bobrow
,
J. E.
,
2008
, “
Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
3
), pp.
286
297
. 10.1109/TNSRE.2008.918389
12.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
1
), pp.
1
29
. 10.1186/1743-0003-11-3
13.
Bhadane
,
M.
,
Liu
,
J.
,
Rymer
,
W. Z.
,
Zhou
,
P.
, and
Li
,
S.
,
2016
, “
Re-Evaluation of EMG-Torque Relation in Chronic Stroke Using Linear Electrode Array EMG Recordings
,”
Sci. Rep.
,
6
, pp.
1
10
. 10.1038/srep28957
14.
Marchal-Crespo
,
L.
, and
Reinkensmeyer
,
D. J.
,
2009
, “
Review of Control Strategies for Robotic Movement Training After Neurologic Injury
,”
J. Neuroeng. Rehabil.
,
6
(
1
), pp.
1
15
. 10.1186/1743-0003-6-20
15.
Marcheschi
,
S.
,
Salsedo
,
F.
,
Fontana
,
M.
, and
Bergamasco
,
M.
,
2011
, “
Body Extender: Whole Body Exoskeleton for Human Power Augmentation
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2011)
,
Shanghai
,
May 9–13
, pp.
611
616
.
16.
Manna
,
S. K.
, and
Dubey
,
V. N.
,
2018
, “
Comparative Study of Actuation Systems for Portable Upper Limb Exoskeletons
,”
Med. Eng. Phys.
,
60
, pp.
1
13
. 10.1016/j.medengphy.2018.07.017
17.
Housman
,
S. J.
,
Le
,
V.
,
Rahman
,
T.
,
Sanchez
,
R. J.
, and
Reinkensmeyer
,
D. J.
,
2007
, “
Arm-Training With T-WREX After Chronic Stroke: Preliminary Results of a Randomized Controlled Trial
,”
Proceedings of IEEE 10th International Conference on Rehabilitation Robotics (ICORR 2007)
,
Noordwijk
,
June 13–15
, pp.
562
568
.
18.
Sanchez
,
R.
,
Reinkensmeyer
,
D.
,
Shah
,
P.
,
Liu
,
J.
,
Rao
,
S.
,
Smith
,
R.
,
Cramer
,
S.
,
Rahman
,
T.
, and
Bobrow
,
J.
,
2004
, “
Monitoring Functional Arm Movement for Home-Based Therapy After Stroke
,”
Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2004)
,
San Francisco, CA
,
Sept. 1–5
, pp.
4787
4790
.
19.
Crea
,
S.
,
Cempini
,
M.
,
Moisè
,
M.
,
Baldoni
,
A.
,
Trigili
,
E.
,
Marconi
,
D.
,
Cortese
,
M.
,
Giovacchini
,
F.
,
Posteraro
,
F.
, and
Vitiello
,
N.
,
2016
, “
A Novel Shoulder-Elbow Exoskeleton With Series Elastic Actuators
,”
Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob 2016)
,
Singapore
,
June 26–29
, pp.
1248
1253
.
20.
Van Ham
,
R.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
. 10.1109/MRA.2009.933629
You do not currently have access to this content.