Abstract

Terrestrial mobile robotics are crucial to a range of missions including planetary exploration, search and rescue, logistics, and national security. Many of these missions require the robot to operate on a broad variety of terrain. Wheels are ideal for energy efficiency but can suffer catastrophic failure when presented with obstacles or complex ground. Legs can help traverse obstacles but at the cost of energy efficiency. Physical adaptation can enable a robot to benefit from both modes of locomotion. This article describes a new approach to physical adaptation through manipulation. Specifically, this article examines how manipulators can be used to change the vehicle’s mode of locomotion and improve energy efficiency and versatility. This article presents “swappable propulsors,” which can be easily attached/detached to adapt the vehicle through the use of permanent magnets. A new robot system that uses its manipulator to discretely switch between wheeled and legged locomotion is created. The experimental results demonstrate how this approach provides a unique combination of energy efficiency and versatility. This study describes the design of swappable propulsors, analyzes how to manipulate them, and describes how they can be used to improve performance. This study extends on prior work with additional analysis, an improved robot prototype, and new experimental results.

References

1.
Hougen
,
D. F.
,
Benjaafar
,
S.
,
Bonney
,
J. C.
,
Budenske
,
J. R.
,
Dvorak
,
M.
,
Gini
,
M.
,
French
,
H.
,
Krantz
,
D. G.
,
Li
,
P. Y.
,
Malver
,
F.
, and
Nelson
,
B.
,
2000
, “
A Miniature Robotic System for Reconnaissance and Surveillance
,”
Proceedings 2000 ICRA. Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol.
1
,
IEEE
, pp.
501
507
.
2.
Matsuno
,
F.
, and
Tadokoro
,
S.
,
2004
, “
Rescue Robots and Systems in Japan
,”
2004 IEEE International Conference on Robotics and Biomimetics
,
Shenyang, China
,
Aug. 22–26
, IEEE, pp.
12
20
.
3.
Yamauchi
,
B. M.
,
2004
,
Packbot: A Versatile Platform for Military Robotics
, Vol.
5422
,
International Society for Optics and Photonics
,
Orlando, FL
, pp.
228
237
.
4.
Kim
,
R.
,
Debate
,
A.
,
Balakirsky
,
S.
, and
Mazumdar
,
A.
,
2020
, “
Using Manipulation to Enable Adaptive Ground Mobility
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 1
, pp.
857
863
.
5.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
,
2001
, “
Rhex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robot. Res.
,
20
(
7
), pp.
616
631
.
6.
Quinn
,
R. D.
,
Offi
,
J. T.
,
Kingsley
,
D. A.
, and
Ritzmann
,
R. E.
,
2002
, “
Improved Mobility Through Abstracted Biological Principles
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30–Oct. 4
, Vol.
3
,
IEEE
, pp.
2652
2657
.
7.
Morrey
,
J. M.
,
Lambrecht
,
B.
,
Horchler
,
A. D.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2003
, “
Highly Mobile and Robust Small Quadruped Robots
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453)
,
Las Vegas, NV
,
Oct. 27–31
, Vol.
1
,
IEEE
, pp.
82
87
.
8.
Lee
,
D.-Y.
,
Jung
,
G.-P.
,
Sin
,
M.-K.
,
Ahn
,
S.-H.
, and
Cho
,
K.-J.
,
2013
, “
Deformable Wheel Robot Based on Origami Structure
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5612
5617
.
9.
Aoki
,
T.
,
Yamato
,
H.
,
Shimaoka
,
M.
, and
Mitsumori
,
S.
,
2013
, “
Study of Omni-Directional All Terrain Mobile Robot With Globular Metal Spring Wheel
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5606
5611
.
10.
Kim
,
Y.-S.
,
Jung
,
G.-P.
,
Kim
,
H.
,
Cho
,
K.-J.
, and
Chu
,
C.-N.
,
2013
, “
Wheel Transformer: A Miniaturized Terrain Adaptive Robot With Passively Transformed Wheels
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5625
5630
.
11.
She
,
Y.
,
Hurd
,
C. J.
, and
Su
,
H.-J.
,
2015
, “
A Transformable Wheel Robot With a Passive Leg
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
4165
4170
.
12.
Park
,
J.
,
Kong
,
D. H.
, and
Park
,
H.-W.
,
2019
, “
Design of Anti-Skid Foot With Passive Slip Detection Mechanism for Conditional Utilization of Heterogeneous Foot Pads
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1170
1177
.
13.
Nagatani
,
K.
,
Kuze
,
M.
, and
Yoshida
,
K.
,
2007
, “
Development of Transformable Mobile Robot With Mechanism of Variable Wheel Diameter
,”
J. Robot. Mechatron
,
19
(3), pp.
252
257
.
14.
Foris
,
A.
,
Wagener
,
N.
,
Boots
,
B.
, and
Mazumdar
,
A.
,
2020
, “
Exploiting Singular Configurations for Controllable, Low-Power Friction Enhancement on Unmanned Ground Vehicles
,”
IEEE Robotics and Automation Letters
,
5
(
2
), pp.
3556
3563
.
15.
Iagnemma
,
K.
,
Rzepniewski
,
A.
,
Dubowsky
,
S.
, and
Schenker
,
P.
,
2003
, “
Control of Robotic Vehicles With Actively Articulated Suspensions in Rough Terrain
,”
Autonom. Robot.
,
14
(
1
), pp.
5
16
.
16.
Dai
,
Y.-J.
,
Nakano
,
E.
,
Takahashi
,
T.
, and
Ookubo
,
H.
,
1996
, “
Motion Control of Leg-Wheel Robot for an Unexplored Outdoor Environment
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96
,
Osaka, Japan
,
Nov. 8
, Vol.
2
,
IEEE
, pp.
402
409
.
17.
Michaud
,
F.
,
Letourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M.-A.
,
Millette
,
M.
,
Paré
,
J.-F.
,
Tremblay
,
M.-C.
, and
Lepage
,
P.
,
2005
, “
Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations
,”
Autonomous Robots
,
18
(
2
), pp.
137
156
.
18.
Smith
,
J. A.
,
Sharf
,
I.
, and
Trentini
,
M.
,
2006
, “
Paw: A Hybrid Wheeled-Leg Robot
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006
,
Orlando, FL
,
May 15–19
, IEEE, pp.
4043
4048
.
19.
Zarrouk
,
D.
,
Pullin
,
A.
,
Kohut
,
N.
, and
Fearing
,
R. S.
,
2013
, “
Star, a Sprawl Tuned Autonomous Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
20
25
.
20.
Endo
,
G.
, and
Hirose
,
S.
,
2011
, “
Study on Roller-Walker-Energy Efficiency of Roller-Walk
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, IEEE, pp.
5050
5055
.
21.
Jeans
,
J. B.
, and
Hong
,
D.
,
2009
, “
Impass: Intelligent Mobility Platform With Active Spoke System
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
1605
1606
.
22.
Okada
,
T.
,
Botelho
,
W. T.
, and
Shimizu
,
T.
,
2010
, “
Motion Analysis With Experimental Verification of the Hybrid Robot Peopler-II for Reversible Switch Between Walk and Roll on Demand
,”
Int. J. Robot. Res.
,
29
(
9
), pp.
1199
1221
.
23.
Phipps
,
C. C.
,
Shores
,
B. E.
, and
Minor
,
M. A.
,
2008
, “
Design and Quasi-Static Locomotion Analysis of the Rolling Disk Biped Hybrid Robot
,”
IEEE Trans. Robot.
,
24
(
6
), pp.
1302
1314
.
24.
Tadakuma
,
K.
,
Tadakuma
,
R.
,
Maruyama
,
A.
,
Rohmer
,
E.
,
Nagatani
,
K.
,
Yoshida
,
K.
,
Ming
,
A.
,
Shimojo
,
M.
,
Higashimori
,
M.
, and
Kaneko
,
M.
,
2010
, “
Mechanical Design of the Wheel-Leg Hybrid Mobile Robot to Realize a Large Wheel Diameter
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
3358
3365
.
25.
Chen
,
S.-C.
,
Huang
,
K.-J.
,
Chen
,
W.-H.
,
Shen
,
S.-Y.
,
Li
,
C.-H.
, and
Lin
,
P.-C.
,
2013
, “
Quattroped: A Leg–Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
730
742
.
26.
Marchese
,
A. D.
,
Asada
,
H.
, and
Rus
,
D.
,
2012
, “
Controlling the Locomotion of a Separated Inner Robot From an Outer Robot Using Electropermanent Magnets
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
3763
3770
.
27.
Hirose
,
S.
,
Imazato
,
M.
,
Kudo
,
Y.
, and
Umetani
,
Y.
,
1986
, “
Internally-Balanced Magnet Unit
,”
Adv. Robot.
,
1
(
3
), pp.
225
242
.
28.
Mazumdar
,
A.
, and
Asada
,
H. H.
,
2009
, “
Mag-Foot: A Steel Bridge Inspection Robot
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, IEEE, pp.
1691
1696
.
29.
Weingarten
,
J. D.
,
Buehler
,
M.
,
Groff
,
R. E.
, and
Koditschek
,
D. E.
,
2002
, “
Gait Generation and Optimization for Legged Robots
,”
The IEEE International Conference on Robotics and Automation
,
Taipei, China
,
January
.
30.
Tucker
,
V.
,
1975
, “
The Energetic Cost of Moving About
,”
Am. Sci.
,
63
(
4
), pp.
413
419
.
You do not currently have access to this content.