Abstract

Compared with serial robots, parallel robots have the advantages of high stiffness and good dynamics. By replacing the rigid limbs with cables, the cable-driven parallel robot (CDPR) is greatly simplified in structure and lightweight. We designed a high-speed CDPR tensioned by the passive rod and spring, named TBot. The robot can realize the SCARA movement as the classical Delta parallel robot. Comparison analysis of TBot and Delta is carried out to reveal the natures of the CDPRs and rigid parallel robots, identify the key issues, and promote industrial applications. Performance of both robots is analyzed with simulation under a typical Adept Motion trajectory. Results illustrate that TBot has advantages of low cost, low inertia, low energy consumption, and adjustable workspace and has great application potential. Energy consumption of TBot is discussed, and the trajectory planning is studied with the genetic algorithm to further reduce the energy consumption, considering the influence of the passive spring. Finally, on the basis of 30% less energy consumption for the Adept Motion than Delta, extra 14.3% energy is saved through the trajectory planning of TBot.

References

1.
Huang
,
T.
,
Mei
,
J. P.
, and
Li
,
Z. X.
,
2015
, “
A Method for Estimating Servomotor Parameters of a Parallel Robot for Rapid Pick-and-Place Operations
,”
ASME J. Med. Devices
,
127
(
4
), pp.
596
601
.
2.
Clavel
,
R.
,
1988
, “
Delta: a Fast Robot With Parallel Geometry
,”
Proceedings of 18th International Symposium on Industrial Robots
,
Lausanne, Switzerland
,
Apr. 26–28
, pp.
91
100
.
3.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mech. Eng. Rev.
,
1
(
1
), pp.
1
17
.
4.
Tang
,
X. Q.
, and
Yao
,
R.
,
2011
, “
Dimensional Design on the Six-Cable Driven Parallel Manipulator of FAST
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111012
.
5.
Pott
,
A.
,
Mutherich
,
H.
,
Kraus
,
W.
,
Schmidt
,
V.
,
Miermeister
,
P.
,
Dietz
,
T.
, and
Verl
,
A.
,
2013
, “
Cable-Driven Parallel Robots for Industrial Applications: The IPAnema System Family
,”
Proceedings of the 44th International Symposium on Robotics
,
Seoul, South Korea
,
Oct. 24–26
, pp.
1
6
.
6.
Landsberger
,
S. E.
, and
Sheridan
,
T. B.
,
1985
, “
A New Design for Parallel Link Manipulators
,”
IEEE 1985 International Conference on Cybernetics and Society
,
Tucson, AZ
,
Nov. 12–15
.
7.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2004
, “
Design of Reduced DOF Parallel Cable-Based Robots
,”
Mech. Mach. Theory
,
39
(
10
), pp.
1051
1065
.
8.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K. L.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,”
Mech. Mach. Theory
,
132
, pp.
207
222
.
9.
Zhang
,
Z. K.
,
Shao
,
Z. F.
, and
Wang
,
L. P.
,
2020
, “
Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
, p.
103693
.
10.
Zhang
,
Z. K.
,
Shao
,
Z. F.
,
Peng
,
F. Z.
,
Li
,
H. S.
, and
Wang
,
L. P.
,
2020
, “
Workspace Analysis and Optimal Design of a Translational CDPR With Passive Springs
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051005
.
11.
Zhang
,
Z. K.
,
Shao
,
Z. F.
, and
Wang
,
L. P.
,
2017
, “
Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot
,”
3rd International Conference on Cable-Driven Parallel Robots (CableCon)
,
Quebec City, Canada
,
Aug. 2–4
, pp.
340
352
.
12.
Costantinescu
,
D.
, and
Croft
,
E.
,
2020
, “
Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators Along Specified Paths
,”
J. Robot. Syst.
,
17
(
5
), pp.
233
249
.
13.
Kim
,
S.
, and
Park
,
F. C.
,
2008
, “
Fast Robot Motion Generation Using Principal Components: Framework and Algorithms
,”
IEEE Trans. Ind. Electron.
,
55
(
6
), pp.
2506
2516
.
14.
Gasparett
,
A.
, and
Zanotto
,
V.
,
2007
, “
A New Method for Smooth Trajectory Planning of Robot Manipulators
,”
Mech. Mach. Theory
,
42
(
4
), pp.
455
471
.
15.
Wang
,
P. F.
,
Mei
,
J. P.
, and
Huang
,
T.
,
2007
, “
Optimal Trajectory Planning for the Grasping and Releasing Operation Time of High-Speed Parallel Manipulator
,”
J. Tianjin Univ. Sci. Technol.
,
40
(
10
), pp.
1139
1145
.
16.
Perez
,
B. W.
,
Barrera
,
C. E.
,
Juarez
,
C. I.
, and
Ramos
,
P. A.
,
2010
, “
Mechanical Energy Optimization in Trajectory Planning for six DOF Robot Maniplulators Based on Eighth-Degree Polynomial Functions and a Genetic Algorithm
,”
2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control
,
Tuxtla Gutierrez, Mexico
,
Sept. 8–10
, pp.
466
451
.
17.
Holland
,
J. H.
,
1973
, “
Genetic Algorithms and the Optimal Allocation of Trials
,”
SIAM J. Comput.
,
2
(
2
), pp.
88
105
.
18.
Yokose
,
Y.
,
2020
, “
Energy-Saving Trajectory Planning for Robots Using the Genetic Algorithm With Assistant Chromosomes
,”
Artif. Life Robot.
,
25
(
1
), pp.
89
93
.
19.
Wang
,
M. M.
,
Luo
,
J. J.
,
Zheng
,
L. L.
,
Yuan
,
J. P.
, and
Walter
,
U.
,
2020
, “
Generate Optimal Grasping Trajectories to the End-Effector Using an Improved Genetic Algorithm
,”
Adv. Space Res.
,
66
(
7
), pp.
1803
1817
.
20.
Hansen
,
C.
,
Oltjen
,
J.
,
Oltjen
,
J.
,
Meike
,
D.
, and
Ortmaier
,
T.
,
2012
, “
Enhanced Approach for Energy-Efficient Trajectory Generation of Industrial Robots
,”
IEEE International Conference on Automation Science and Engineering
,
Seoul, South Korea
,
Aug. 20–24
, pp.
1
7
.
21.
Paes
,
K.
,
Dewulf
,
W.
,
Vamder
,
K.
,
Kellens
,
K.
, and
Slaets
,
P.
,
2014
, “
Energy Efficient Trajectories for an Industrial ABB Robot
,”
The 21st CIRP Conference on Life Cycle Engineering
,
Trondheim, Norway
, June 18–10, pp.
105
110
.
22.
Zhang
,
L. M.
,
2011
, “
Integrated Optimal Design of Delta Robot Using Dynamic Performance Indices
,”
Ph.D. dissertation
,
Tianjin University
,
Tianjin, China
.
23.
The Bat-800 Robot
”, http://www.robotphoenix.com/index.php?m=content&c=index&a=lists&catid=26/, Last Modified June 1, 2020, Accessed July 31, 2021.
24.
Szep
,
C.
,
Stam
,
S. D.
, and
Csibi
,
V.
,
2011
, “
Design, Workspace Analysis and Inverse Kinematics Problem of Delta Parallel Robot
,”
Mechanika
,
17
(
3
), pp.
296
299
.
You do not currently have access to this content.