Abstract
This paper introduces a classification of the inverse kinematics solutions (or robot postures) of six degrees-of-freedom serial robots with a geometry based on or similar to Universal Robots’ arms. The solution of the inverse kinematics problem is first presented briefly, and the equations required to classify the robot postures(branches) based on the joint coordinates are then introduced.
References
1.
“
How Universal Robots Sold the First Cobot
,” https://www.universal-robots.com/about-universal-robots/news-centre/the-history-behind-collaborative-robots-cobots/, Accessed March 26, 2021.2.
Denavit
, J.
, Hartenberg
, R.
, Mooring
, B.
, Tang
, G.
, Whitney
, D.
, and Lozinski
, C.
, 1955
, “54 Kinematic Parameter
,” J. Appl. Mech.
, 77
(2
), pp. 215
–221
. 3.
Lipkin
, H.
, 2005
, “A Note on Denavit-hartenberg Notation in Robotics
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA
, Vol. 47446
, ASME, pp. 921
–926
.4.
Angeles
, J.
, 1985
, “On the Numerical Solution of the Inverse Kinematic Problem
,” Int. J. Robot. Res.
, 4
(2
), pp. 21
–37
. 5.
Manocha
, D.
, and Canny
, J. F.
, 1994
, “Efficient Inverse Kinematics for General 6r Manipulators
,” IEEE. Trans. Rob. Autom.
, 10
(5
), pp. 648
–657
. 6.
Buss
, S. R.
, 2004
, “Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,” IEEE J. Robot. Autom.
, 17
(1–19
), p. 16
.7.
Kebria
, P. M.
, Al-Wais
, S.
, Abdi
, H.
, and Nahavandi
, S.
, 2016
, “Kinematic and Dynamic Modelling of Ur5 Manipulator
,” 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
, Budapest, Hungary
, IEEE
, p. 004229
.8.
Bouzgou
, K.
, Ahmed-Foitih
, Z.
, and Oran-Algeria
, U.
, 2014
, “Singularity Analysis and Illustration of Inverse Kinematic Solutions of 6 Dof Fanuc 200ic Robot in Virtual Environment
,” J. Intel. Comput.
, 5
(3
), pp. 91
–105
.9.
Jiang
, L.
, Xijian
, H.
, Liu
, Y.
, and Liu
, H.
, 2013
, “An Analytical Inverse Kinematic Solution with the Reverse Coordinates for 6-dof Manipulators
,” Proceedings of the IEEE International Conference on Mechatronics and Automation
, Takamatsu, Kagawa, Japan
, Aug. 4–7, IEEE
, pp. 1552
–1558
.10.
Balkan
, T.
, Özgören
, M. K.
, Arikan
, M. S.
, and Baykurt
, H.
, 2001
, “A Kinematic Structure-Based Classification and Compact Kinematic Equations for Six-dof Industrial Robotic Manipulators
,” Mech. Mach. Theory
, 36
(7
), pp. 817
–832
. 11.
Özgören
, M. K.
, 2002
, “Topological Analysis of 6-joint Serial Manipulators and Their Inverse Kinematic Solutions
,” Mech. Mach. Theory
, 37
(5
), pp. 511
–547
. 12.
Cui
, L.
, and Dai
, J. S.
, 2015
, “A Polynomial Formulation of Inverse Kinematics of Rolling Contact
,” ASME J. Mech. Rob.
, 7
(4
), p. 041003
. 13.
Ferrentino
, E.
, and Chiacchio
, P.
, 2020
, “On the Optimal Resolution of Inverse Kinematics for Redundant Manipulators Using a Topological Analysis
,” ASME J. Mech. Rob.
, 12
(3
), p. 031002
. 14.
Simas
, H.
, and Di Gregorio
, R.
, 2019
, “A Technique Based on Adaptive Extended Jacobians for Improving the Robustness of the Inverse Numerical Kinematics of Redundant Robots
,” ASME J. Mech. Rob.
, 11
(2
), p. 020913
. 15.
Balkan
, T.
, Özgören
, M. K.
, Arıkan
, M. S.
, and Baykurt
, H. M.
, 2000
, “A Method of Inverse Kinematics Solution Including Singular and Multiple Configurations for a Class of Robotic Manipulators
,” Mech. Mach. Theory
, 35
(9
), pp. 1221
–1237
. 16.
Peiper
, D. L.
, 1968
, “The Kinematics of Manipulators Under Computer Control
,” Technical Report
, Department of Computer Science, Stanford University
, CA
.17.
Hollerbach
, J.
, and Sahar
, G.
, 1984
, “Wrist-partitioned Inverse Kinematic Accelerations and Manipulator Dynamics
,” Proceedings of the 1984 IEEE International Conference on Robotics and Automation
, Atlanta, GA
, Mar. 13–15
, Vol. 1
, IEEE
, pp. 152
–161
.18.
Hayes
, M.
, Husty
, M.
, and Zsombor-Murray
, P.
, 2002
, “Singular Configurations of Wrist-Partitioned 6r Serial Robots: A Geometric Perspective for Users
,” Trans. Canad. Soc. Mech. Eng.
, 26
(1
), pp. 41
–55
. 19.
Sugihara
, T.
, 2011
, “Solvability-Unconcerned Inverse Kinematics by the Levenberg–Marquardt Method
,” IEEE Trans. Robot.
, 27
(5
), pp. 984
–991
. Copyright © 2021 by ASME
You do not currently have access to this content.