Abstract

This closure exposes the technical inconsistencies, erroneous comments, and misconceptions contained in the Discussion Article (Medrano-Cerda, 2020, “Discussion: ‘Selective Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot’,” ASME J. Mech. Rob., 10.1115/1.4049005 [1]). The majority of incorrect comments relating to stability are not based on mathematical rigor and equations, but on the reproduction of more generic statements made in some textbooks published in the early 1990s. The comments in the Discussion Article fail to demonstrate how any of these generic statements could be applied to the specific cases presented in the Paper (Spyrakos-Papastavridis et al., 2018, “Selective-Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot,” ASME J. Mech. Rob., 10(3). 10.1115/1.4039394 [2]) criticized by the Discussion Article. Further, the only equation that appears in the Discussion Article is incorrect, as will be demonstrated in this closure. Apart from being expressed incorrectly, the text accompanying this equation reveals the fundamentally incorrect mathematical assumption that a diagonal matrix is not equal to its transpose. Moreover, a significant proportion of the comments in the Discussion Article relies upon misconceptions about flexible-joint robot control and humanoid robotics, in terms of their theory and practice, standing in contrast to results reported in these research fields over the last decades.

References

1.
Medrano-Cerda
,
G. A.
,
2020
, “
Discussion: Selective Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot
,”
ASME J. Mech. Rob.
2.
Spyrakos-Papastavridis
,
E.
,
Dai
,
J. S.
,
Childs
,
P. R. N.
, and
Tsagarakis
,
N. G.
,
2018
, “
Selective-Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031009
.
3.
Lanari
,
L.
,
Sicard
,
P.
, and
Wen
,
J.
,
1993
, “
Trajectory Tracking of Flexible Joint Robots: A Passivity Approach
,”
European Control Conference (ECC)
, pp.
886
891
.
4.
Battilotti
,
S.
, and
Lanari
,
L.
,
1995
, “
Global Set Point Control Via Link Position Measurement for Flexible Joint Robots
,”
Syst. Control Lett.
,
25
(
1
), pp.
21
29
.
5.
Keppler
,
M.
,
Lakatos
,
D.
, and
Ott
,
C.
,
2018
, “
Elastic Structure Preserving (ESP) Control of Compliantly Actuated Robots
,”
IEEE Trans. Rob.
,
1
(
2
), pp.
1
19
.
6.
Iskandar
,
M.
,
Ott
,
C.
,
Eiberger
,
O.
,
Keppler
,
M.
,
Albu-Schäffer
,
A.
, and
Dietrich
,
A.
,
2020
, “
Joint-Level Control of the DLR Lightweight Robot SARA
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
8903
8910
.
7.
Spyrakos-Papastavridis
,
E.
,
Childs
,
P. R. N.
, and
Dai
,
J. S.
,
2020
, “
Passivity Preservation for Variable Impedance Control of Compliant Robots
,”
IEEE/ASME Trans. Mech.
,
25
(
5
), pp.
2342
2353
.
8.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2021
, “
Flexible-Joint Humanoid Balancing Augmentation Via Full-State Feedback Variable Impedance Control
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021014
.
9.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2021
, “
Minimally Model-Based Trajectory Tracking and Variable Impedance Control of Flexible-Joint Robots
,”
IEEE/ASME Trans. Ind. Electron.
,
68
(
7
), pp.
6031
6041
.
10.
Spyrakos-Papastavridis
,
E.
,
Medrano-Cerda
,
G. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2013
, “
A Compliant Humanoid Walking Strategy Based on the Switching of State Feedback Gravity Compensation Controllers
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
3630
3636
.
11.
Spyrakos-Papastavridis
,
E.
,
Medrano-Cerda
,
G. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2013
, “
Gravity Compensation Control of Compliant Joint Systems With Multiple Drives
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
4960
4966
.
12.
Xie
,
W.
,
Wen
,
C.
, and
Li
,
Z.
,
2001
, “
Input-to-State Stabilization of Switched Nonlinear Systems
,”
IEEE Trans. Automat. Contr.
,
46
(
7
), pp.
1111
1116
.
13.
Henze
,
B.
,
Roa
,
M. A.
, and
Ott
,
C.
,
2016
, “
Passivity-Based Whole-Body Balancing for Torque-Controlled Humanoid Robots in Multi-Contact Scenarios
,”
Int. J. Rob. Res.
,
35
(
12
), pp.
1522
1543
.
14.
Lanari
,
L.
,
Sicard
,
P.
, and
Wen
,
J. T.
,
1993
, “
Stability and Performance Analysis of Flexible Joint Robots Under Feedforward Approximations
,”
European Control Conference
, Vol.
2
, pp.
892
897
.
15.
Khalil
,
H.
,
2002
,
Nonlinear Systems
, 3rd ed,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
64
67
.
16.
Tomei
,
P.
,
1991
, “
A Simple PD Controller for Robots With Elastic Joints
,”
IEEE Trans. Automat. Contr.
,
36
(
10
), pp.
1208
1213
.
17.
Righetti
,
L.
,
Buchli
,
J.
,
Mistry
,
M.
, and
Schaal
,
S.
,
2011
, “
Inverse Dynamics Control of Floating-Base Robots With External Constraints: A Unified View
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1085
1090
.
18.
Spyrakos-Papastavridis
,
E.
,
Medrano-Cerda
,
G. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2013
, “
A Push Recovery Strategy for a Passively Compliant Humanoid Robot Using Decentralized LQR Controllers
,”
IEEE International Conference on Mechatronics
, pp.
464
470
.
19.
Spyrakos-Papastavridis
,
E.
,
Medrano-Cerda
,
G. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2012
, “
Global Stability Study of a Compliant Double-Inverted Pendulum Based on Hamiltonian Modeling
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC)
, pp.
1481
1488
.
20.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2020
, “
A Model-Free Solution for Stable Balancing and Locomotion of Floating-Base Legged Systems
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, pp.
3816
3822
.
21.
Spyrakos-Papastavridis
,
E.
,
Perrin
,
N.
,
Tsagarakis
,
N.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2014
, “
Lyapunov Stability Margins for Humanoid Robot Balancing
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
945
951
.
22.
Vukobratovic
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
157
173
.
23.
Sardain
,
P.
, and
Bessonnet
,
G.
,
2004
, “
Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point
,”
IEEE Trans. Syst., Man, Cybernetic
,
34
(
5
), pp.
630
637
.
24.
Kajita
,
S.
,
Morisawa
,
M.
,
Miura
,
K.
,
Nakaoka
,
S.
,
Harada
,
K.
,
Kaneko
,
K.
, and
Kanehiro
,
F.
,
2010
, “
Biped Walking Stabilization Based on Linear Inverted Pendulum Tracking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
4489
4496
.
25.
Spyrakos-Papastavridis
,
E.
,
Kashiri
,
N.
,
Lee
,
J.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2015
, “
Online Impedance Parameter Tuning for Compliant Biped Balancing
,”
IEEE-RAS International Conference on Humanoid Robots
, pp.
210
216
.
26.
Spyrakos-Papastavridis
,
E.
,
Childs
,
P.
, and
Tsagarakis
,
N. G.
,
2017
, “
Variable Impedance Walking Using Time-Varying Lyapunov Stability Margins
,”
IEEE-RAS International Conference on Humanoid Robotics
, pp.
318
323
.
27.
Angelini
,
F.
,
Xin
,
G.
,
Wolfslag
,
W. J.
,
Tiseo
,
C.
,
Mistry
,
M.
,
Garabini
,
M.
,
Bicchi
,
A.
, and
Vijayakumar
,
S.
,
2019
, “
Online Optimal Impedance Planning for Legged Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
6028
6035
.
You do not currently have access to this content.